106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Intelligent detection of fetal hydrocephalus

ORCID Icon, ORCID Icon &
Pages 641-648 | Received 07 Feb 2020, Accepted 01 Jun 2020, Published online: 26 Nov 2020

References

  • Acharya UR, Fujita H, Lih OS, Adam M, Tan JH, Chua CK. 2017. Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network. Knowledge-Based Sys. 132:62–71. doi:10.1016/j.knosys.2017.06.003.
  • Ashok V, Murugesan G. 2017. Detection of retinal area from scanning laser ophthalmoscope images (SLO) using deep neural network. Int J Biomed Eng Technol. 23(2–4):303–314. doi:10.1504/IJBET.2017.082668.
  • Ben Slama A, Mouelhi A, Sahli H, Zeraii A, Marrakchi J, Trabelsi H. 2019. A deep convolutional neural network for automated vestibular disorder classification using VNG analysis. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1–9.
  • Cerrolaza JJ et al. 2018. Deep learning with ultrasound physics for fetal skull segmentation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018. Washington, DC. p. 564–567.
  • Ciurte A, Bresson X, Cuadra E, Bach M. 2012. A semi-supervised patchbased approach for segmentation of fetal ultrasound imaging. Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI, MICCAI workshop on Paediatric and Perinatal Imaging, Nice, France. p. 5–7.
  • Elamvazuthi I, Zain MLBM, Begam KM. 2013. Despeckling of ultrasound images of bone fracture using multiple filtering algorithms. Math Comput Model. 57(1–2):152–168. doi:10.1016/j.mcm.2011.07.021.
  • Foi A, Maggioni M, Pepe A, Tohka J. 2012. Head contour extraction from the fetal ultrasound images by difference of gaussians revolved along elliptical paths. Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI, Barcelona, 1–3.
  • Garg A, Goal J, Malik S, Choudhary K. 2011. De-speckling of medical ultrasound images using Wiener filter and wavelet transform. Int J Electron Commun Technol. 2(3):2230–7109.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint. arXiv:1502.03167. PMLR 37:448–456.
  • Jang HJ, Cho KO. 2019. Applications of deep learning for the analysis of medical data. Arch Pharm Res. 42(6):492–504.
  • Karthikeyan K, Chandrasekar C. 2011. Speckle noise reduction of medical ultrasound images using Bayesshrink wavelet threshold. J Comput Appl Technol. 22(9):8–14. doi:10.5120/2614-3646.
  • Krizhevsky A, Sutskever I, Hinton GE (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, Tahoe, Nevada (pp. 1097–1105).
  • Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. 2017. A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88. doi:10.1016/j.media.2017.07.005.
  • Lu W, Tan J. 2008. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT). Pattern Recognit. 41(4):1268–1279. doi:10.1016/j.patcog.2007.09.006.
  • Mohanapreethi A, Raghavan DVS. 2014. Multiresolution based hybrid filtering technique for despeckling ultrasound images. IOSR J VLSI Signal Process. 4(3):07–15. doi:10.9790/4200-04310715.
  • Montazeri M, Montazeri M, Montazeri M, Beigzadeh A. 2016. Machine learning models in breast cancer survival prediction. Technol Health Care. 24(1):31–42. doi:10.3233/THC-151071.
  • Parveen N, Sathik MM. 2011. Detection of pneumonia in chest X-ray images. J Xray Sci Technol. 19(4):423–428. doi:10.3233/XST-2011-0304.
  • Ponomarev GV, Gelfand MS, Kazanov MD. 2012. A multilevel thresholding combined with edge detection and shape-based recognition for segmentation of fetal ultrasound images. Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI, Barcelona, Spain. p. 17–19.
  • RUEDA S, Fathima S, Knight C, Yakub M, Papageorghiou AT,  Rahatullah B, Foi A, Maggioni M, Pepe A, Tohka J, et al. 2014. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge. IEEE Trans Med Imaging. 33(4):797–813. doi:10.1109/TMI.2013.2276943
  • Sahli H, Ben Slama A, Mouelhi A, Soayeh N, Rachdi R, Sayadi M. 2020. A computer-aided method based on geometrical texture features for a precocious detection of fetal Hydrocephalus in ultrasound images. Technol Health Care:1–22. (Preprint).
  • Sahli H, Mouelhi A, Ben Slama A, Sayadi M, Rachdi R. 2019a. Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images. J Med Eng Technol. 43(5):279–286. doi:10.1080/03091902.2019.1653389.
  • Sahli H, Mouelhi A, Sayadi M, Rachdi R (2018, December). Discriminant textural feature selection and classification for a computerized fetal hydrocephalus detection. 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). Nice, France: IEEE. p. 232–237.
  • Sahli H, Slama AB, Zaafouri A, Sayadi M, Rachdi R. 2016. Automated detection of current fetal head in ultrasound sequences. 2016 International Image Processing, Applications and Systems (IPAS), November. Hammamet, Tunisia: IEEE. pp. 1–6.
  • Sahli H, Zaafouri A, Slama AB, Rachdi R, Sayadi M. 2019b. Analytic approach for fetal head biometric measurements based on log gabor features. Iran J Sci Technol Trans A. 43(3):1049–1057. doi:10.1007/s40995-018-0523-y.
  • Sainath TN, Mohamed AR, Kingsbury B, Ramabhadran B. 2013. Deep convolutional neural networks for LVCSR. 2013 IEEE international conference on acoustics, speech and signal processing. Vancouver, Canada: IEEE. May. p. 8614–8618.
  • Sathish P, Elango NM. 2019. Exponential cuckoo search algorithm to radial basis neural network for automatic classification in MRI images. Comput Methods Biomech Biomed Eng. 7(3):273–285.
  • Shrimali V, Anand RS, Kumar V. 2009. Improved segmentation of ultrasound images for fetal biometry, using morphological operators. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. September; Minneapolis, Minnesota: IEEE. p. 459–462.
  • Skeika EL. 2019. Utilização de redes neurais completamente convolucionais para identificação e medição de crânios fetais [Master’s thesis], Universidade Tecnológica Federal do Paraná.
  • Slama AB, Mouelhi A, Manoubi S, Ben Salah M, Trabelsi H, Sayadi M, Fnaiech F. 2018. An enhanced approach for vestibular disorder assessment. 2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME). March; Gammarth, Tunisia: IEEE. p. 243–246.
  • Slama AB, Mouelhi A, Sahli H, Manoubi S, Mbarek C, Trabelsi H, … Sayadi M. 2017. A new preprocessing parameter estimation based on geodesic active contour model for automatic vestibular neuritis diagnosis. Artif Intell Med. 80:48–62.
  • Sobhaninia Z, Rafiei S, Emami A, Karimi N, Najarian K, Samavi S, Soroushmehr SR (2019, July). Fetal ultrasound image segmentation for measuring biometric parameters using multi-task deep learning. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE p. 6545–6548.
  • Sucharitha M, Geetha KP. 2015. Brain tissue segmentation using fuzzy clustering techniques. Technol Health Care. 23(5):571–580. doi:10.3233/THC-151012.
  • Sun C. 2012. Automatic fetal head measurements from ultrasound images using circular shortest paths. Proceedings of challenge US: biometric measurements from fetal ultrasound images, ISBI. 13–15.
  • Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, … Acharya UR. 2018. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med. 94:19–26. doi:10.1016/j.compbiomed.2017.12.023.
  • Tomasiello S. 2019. A granular functional network classifier for brain diseases analysis. In: Computer methods in biomechanics and biomedical engineering: imaging &visualization. p. 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.