380
Views
5
CrossRef citations to date
0
Altmetric
Research Article

A review of silhouette extraction algorithms for use within visual hull pipelines

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 649-670 | Received 09 Dec 2019, Accepted 28 Jun 2020, Published online: 17 Jul 2020

References

  • Abrams GD, Harris AH, Andriacchi TP, Safran MR. 2014. Biomechanical analysis of three tennis serve types using a markerless system. Br J Sports Med. 48(4):339–342. doi:10.1136/bjsports-2012-091371.
  • Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. 2012. Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell. 34(11):2274–2282. doi:10.1109/TPAMI.2012.120.
  • Aitken A, Ledig C, Theis L, Caballero J, Wang Z, Shi W. 2017. Checkerboard artifact free sub-pixel convolution: A note on sub-pixel convolution, resize convolution and convolution resize. arXiv Preprint arXiv:1707 02937.
  • Arlen T. 2018. Understanding the map evaluation metric for object detection. [Online]. Retrieved September 18, 2019, from https://medium.com/@timothycarlen/understanding-the-map-evaluation-metric-for-object-detection-a07fe6962cf3
  • Bakkay M, Rashwan H, Salmane H, Khoudour L, Puigtt D, Ruichek Y. 2018. Bscgan: deep background subtraction with conditional generative adversarial networks. In 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE. p. 4018–4022.
  • Bartlett R, Wheat J, Robins M. 2007. Is movement variability important for sports biomechanists? Sports Biomech. 6(2):224–243. doi:10.1080/14763140701322994.
  • Behzadfar N, Soltanian-Zadeh H. 2012. Automatic segmentation of brain tumors in magnetic resonance images. In Biomedical and Health Informatics (BHI), 2012 IEEEEMBS International Conference on. Hong Kong and Shenzhen, China: IEEE. p. 329–332.
  • Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sensing. 65(1):2–16. doi:10.1016/j.isprsjprs.2009.06.004.
  • Blauensteiner P, Kampel M. 2004. Visual surveillance of an airport’s apron-An overview of the AVITRACK project. na.
  • Boughorbel S, Jarray F, El-Anbari M, Zou Q. 2017. Optimal classifier for imbalanced data using matthews correlation coefficient metric. PLoS One. 12(6):e0177678. doi:10.1371/journal.pone.0177678.
  • Bourdev L, Maji S, Brox T, Malik J. 2010. Detecting people using mutually consistent poselet activations. In European conference on computer vision. Heraklion, Crete, Greece: Springer. p. 168–181.
  • Bourdev L, Malik J. 2009. Poselets: body part detectors trained using 3d human pose annotations. In Computer Vision, 2009 IEEE 12th International Conference on. Kyoto, Japan: IEEE. p. 1365–1372.
  • Bouwmans T. 2014. Traditional and recent approaches in background modeling for foreground detection: an overview. Comput Sci Rev. 11:31–66. doi:10.1016/j.cosrev.2014.04.001.
  • Brox T, Bourdev L, Maji S, Malik J. 2011. Object segmentation by alignment of poselet activations to image contours. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. Colorado Springs, CO: IEEE. p. 2225–2232.
  • Butler DE, Bove VM, Sridharan S. 2005. Real-time adaptive foreground/background segmentation. EURASIP J Adv Signal Process. 2005(14):841926. doi:10.1155/ASP.2005.2292.
  • Campbell ND, Vogiatzis G, Hern´andez C, Cipolla R. 2011. Automatic object segmentation from calibrated images. In Visual Media Production (CVMP), 2011 Conference for. London, UK: IEEE. p. 126–137.
  • Campbell ND, Vogiatzis G, Hernández C, Cipolla R. 2010. Automatic 3d object segmentation in multiple views using volumetric graph-cuts. Image Vis Comput. 28(1):14–25. doi:10.1016/j.imavis.2008.09.005.
  • Camplani M, Maddalena L, Alcover GM, Petrosino A, Salgado L. 2017. A benchmarking framework for background subtraction in rgbd videos. In International Conference on Image Analysis and Processing. Catania, Italy: Springer. p. 219–229.
  • Cappozzo A, Cappello A, Croce UD, Pensalfini F. 1997. Surface-marker cluster design criteria for 3-d bone movement reconstruction. IEEE Trans Biomed Eng. 44(12):1165–1174. doi:10.1109/10.649988.
  • Cappozzo A, Catani F, Leardini A, Benedetti M, Della Croce U. 1996. Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech. 11(2):90–100. doi:10.1016/0268-0033(95)00046-1.
  • Ceseracciu E, Sawacha Z, Fantozzi S, Cortesi M, Gatta G, Corazza S, Cobelli C. 2011. Markerless analysis of front crawl swimming. J Biomech. 44(12):2236–2242. doi:10.1016/j.jbiomech.2011.06.003.
  • Chawla NV, Japkowicz N, Kotcz A. 2004. Special issue on learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter. 6(1):1–6. doi:10.1145/1007730.1007733.
  • Chen, L. C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., ... & Shlens, J. 2018. Searching for efficient multi-scale architectures for dense image prediction. In Advances in neural information processing systems; pp. 8699–8710.
  • Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2018b. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848. doi:10.1109/TPAMI.2017.2699184.
  • Chen L-C, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic image segmentation. arXiv Preprint arXiv:1706 05587.
  • Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. 2018c. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv Preprint arXiv:1802 02611.
  • Cheng H-D, Jiang XH, Sun Y, Wang J. 2001. Color image segmentation: advances and prospects. Pattern Recognit. 34(12):2259–2281. doi:10.1016/S0031-3203(00)00149-7.
  • Cheung SCS, Kamath C. 2005. Robust background subtraction with foreground validation for urban traffic video. EURASIP J Adv Signal Process. 2005(14):726261. doi:10.1155/ASP.2005.2330.
  • Chilamkurthy S. 2017. A 2017 guide to semantic segmentation with deep learning. [Online]. Retrieved September 2, 2019, from http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
  • Chollet F. 2017. Xception: deep learning with depthwise separable convolutions. arXiv Preprint. pp. 1610–02357.
  • Cire¸san D, Meier U, Schmidhuber J. 2012. Multi-column deep neural networks for image classification. arXiv Preprint arXiv:1202 2745.
  • Corazza S, Mündermann L, Chaudhari A, Demattio T, Cobelli C, Andriacchi TP. 2006. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng. 34(6):1019–1029. doi:10.1007/s10439-006-9122-8.
  • Corazza S, Mündermann L, Gambaretto E, Ferrigno G, Andriacchi TP. 2010. Markerless motion capture through visual hull, articulated icp and subject specific model generation. Int J Comput Vis. 87(1–2):156. doi:10.1007/s11263-009-0284-3.
  • Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. 2016. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV: IEEE. p. 3213–3223.
  • Crane JC, Olson MP, Nelson SJ. 2013. Sivic: open-source, standards-based software for dicom mr spectroscopy workflows. J Biomedl Imaging. 2013:12.
  • Dahl GE, Sainath TN, Hinton GE. 2013. Improving deep neural networks for lvcsr using rectified linear units and dropout. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. Vancouver, Canada: IEEE. p. 8609–8613.
  • Djelouah A, Franco J-S, Boyer E, Le Clerc F, P´erez P. 2012. N-tuple color segmentation for multi-view silhouette extraction. In European Conference on Computer Vision. Florence, Italy: Springer. p. 818–831.
  • Djelouah A, Franco J-S, Boyer E, Le Clerc F, P´erez P. 2013. Multi-view object segmentation in space and time. In Proceedings of the IEEE International Conference on Computer Vision. Syndey, Australia: IEEE. p. 2640–2647.
  • Djelouah A, Franco J-S, Boyer E, Le Clerc F, P´erez P. 2015. Sparse multi-view consistency for object segmentation. IEEE Trans Pattern Anal Mach Intell. 37(9):1890–1903. doi:10.1109/TPAMI.2014.2385704.
  • Djelouah A, Franco J-S, Boyer E, P´erez P, Drettakis G. 2016. Cotemporal multiview video segmentation. In 3D Vision (3DV), 2016 Fourth International Conference on. Stanford, CA: IEEE. p. 360–369.
  • Doll´ar P, Zitnick CL. 2013. Structured forests for fast edge detection. In Proceedings of the IEEE International Conference on Computer Vision. Syndey, Australia: IEEE. p. 1841–1848.
  • Elhabian SY, El-Sayed KM, Ahmed SH. 2008. Moving object detection in spatial domain using background removal techniques-state-of-art. Recent Pat Comput Sci. 1(1):32–54. doi:10.2174/1874479610801010032.
  • Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. 2010. The pascal visual object classes (voc) challenge. Int J Comput Vis. 88(2):303–338. doi:10.1007/s11263-009-0275-4.
  • Farabet C, Couprie C, Najman L, LeCun Y. 2013. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 35(8):1915–1929. doi:10.1109/TPAMI.2012.231.
  • Feldmann T, Dießelberg L, W¨orner A. 2009. Adaptive foreground/background segmentation using multiview silhouette fusion. In Joint Pattern Recognition Symposium: Jena, Germany: Springer. p. 522–531.
  • Fern’ndez-Baena A, Sus´ın A, Lligadas X. 2012. Biomechanical validation of upperbody and lower-body joint movements of kinect motion capture data for rehabilitation treatments. In Intelligent networking and collaborative systems (INCoS), 2012 4th international conference on. Bucharest, Romania: IEEE. p. 656–661.
  • Furukawa Y, Ponce J. 2006. Carved visual hulls for image-based modeling. In European Conference on Computer Vision. Florence, Italy: Springer. p. 564–577.
  • Gall J, Stoll C, De Aguiar E, Theobalt C, Rosenhahn B, Seidel H-P. 2009. Motion capture using joint skeleton tracking and surface estimation. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. Miami, FL: IEEE. p. 1746–1753.
  • Gallego J, Salvador J, Casas JR, Pardas M. 2011. Joint multi-view foreground segmentation and 3d reconstruction with tolerance loop. In Image Processing (ICIP), 2011 18th IEEE International Conference on. Brussels, Belgium, IEEE. p. 997–1000.
  • Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, GarciaRodriguez J. 2017. A review on deep learning techniques applied to semantic segmentation. arXiv Preprint arXiv:1704 06857.
  • Ghiasi G, Fowlkes CC. 2016. Laplacian pyramid reconstruction and refinement for semantic segmentation. In European Conference on Computer Vision. Amsterdam, Netherlands: Springer. p. 519–534.
  • Golovin D, Solnik B, Moitra S, Kochanski G, Karro J, Sculley D. 2017. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada: ACM. p. 1487–1495.
  • Goyette N, Jodoin P-M, Porikli F, Konrad J, Ishwar P 2012. Changedetection. net: A new change detection benchmark dataset. In CVPR Workshops, no. 2012. Providence, USA: IEEE. p.1–8.
  • Grauman K, Shakhnarovich G, Darrell T. 2003. A bayesian approach to image-based visual hull reconstruction. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on; vol. 1. Madison, WI: IEEE. p. I–I.
  • He H, Garcia EA. 2008. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 21(9):1263–1284.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE. p. 770–778.
  • Hirschmuller H. 2008. Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell. 30(2):328–341. doi:10.1109/TPAMI.2007.1166.
  • Holden JP, Orsini JA, Siegel KL, Kepple TM, Gerber LH, Stanhope SJ. 1997. Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture. 5(3):217–227. doi:10.1016/S0966-6362(96)01088-0.
  • Hou X, Yuille A, Koch C. 2013. Boundary detection benchmarking: beyond fmeasures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE.  p. 2123–2130.
  • Ioannidou A, Chatzilari E, Nikolopoulos S, Kompatsiaris I. 2017. Deep learning advances in computer vision with 3d data: A survey. ACM Comput Surv (CSUR). 50(2):20. doi:10.1145/3042064.
  • Jodoin P-M, Maddalena L, Petrosino A, Wang Y. 2017. Extensive benchmark and survey of modeling methods for scene background initialization. IEEE Trans Image Process. 26(11):5244–5256. doi:10.1109/TIP.2017.2728181.
  • KaewTraKulPong, P. and Bowden, R., 2002. An improved adaptive background mixture model for real-time tracking with shadow detection. In Video-based surveillance systems (pp. 135–144). Boston, MA: Springer..
  • Kim B, Son J, Sohn K. 2011. Illumination invariant road detection based on learning method. In Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. Washington, DC: IEEE. p. 1009–1014.
  • Kim S-H, Tai Y-W, Park J, Kweon IS. 2016. Multi-view object extraction with fractional boundaries. IEEE Trans Image Process. 25(8):3639–3654. doi:10.1109/TIP.2016.2555698.
  • Kolev K, Brox T, Cremers D. 2012. Fast joint estimation of silhouettes and dense 3d geometry from multiple images. IEEE Trans Pattern Anal Mach Intell. 34(3):493–505. doi:10.1109/TPAMI.2011.150.
  • Kowdle A, Batra D, Chen W-C, Chen T. 2010. Imodel: interactive co-segmentation for object of interest 3d modeling. In European Conference on Computer Vision. Heraklion, Crete. Springer. p. 211–224.
  • Kowdle A, Sinha SN, Szeliski R. 2012. Multiple view object cosegmentation using appearance and stereo cues. In European Conference on Computer Vision. Florence, Italy: Springer. p. 789–803.
  • Kr¨ahenbu¨hl P, Koltun V. 2011. Efficient inference in fully connected crfs with gaussian edge potentials. In Advances in neural information processing systems. p. 109–117.
  • Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. Lake Tahoe, NV. p. 1097–1105.
  • Lallier C, Reynaud E, Robinault L, Tougne L. 2011. A testing framework for background subtraction algorithms comparison in intrusion detection context. In 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Klagenfurt, Austria: IEEE. p. 314–319.
  • Laurentini A. 1994. The visual hull concept for silhouette-based image understanding. IEEE Trans Pattern Anal Mach Intell. 16(2):150–162. doi:10.1109/34.273735.
  • Lazebnik S, Furukawa Y, Ponce J. 2007. Projective visual hulls. Int J Comput Vis. 74(2):137–165. doi:10.1007/s11263-006-0008-x.
  • Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. 2015. Deeply-supervised nets. In Artificial Intelligence and Statistics. San Diego, CA. p. 562–570.
  • Lee W, Woo W, Boyer E. 2011. Silhouette segmentation in multiple views. IEEE Trans Pattern Anal Mach Intell. 33(7):1429–1441. doi:10.1109/TPAMI.2010.196.
  • Leykin A, Tuceryan M. 2007. Detecting shopper groups in video sequences. In Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on. Londom, UK: IEEE. p. 417–422.
  • Lhuillier M, Quan L. 2005. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans Pattern Anal Mach Intell. 27(3):418–433. doi:10.1109/TPAMI.2005.44.
  • Li B, Meng MQH. 2009. Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Comput Biol Med. 39(2):141–147. doi:10.1016/j.compbiomed.2008.11.007.
  • Lim LA, Keles HY. 2018a. Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding. arXiv Preprint arXiv:1801 02225.
  • Lim LA, Keles HY. 2018b. Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recognit Lett. 112:256–262. doi:10.1016/j.patrec.2018.08.002.
  • Lim LA, Keles HY. 2018c. Learning multi-scale features for foreground segmentation. arXiv Preprint arXiv:1808 01477.
  • Lin D, Ji Y, Lischinski D, Cohen-Or D, Huang H. 2018. Multi-scale context intertwining for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: IEEE. p. 603–619.
  • Lin G, Milan A, Shen C, Reid ID. 2017. Refinenet: multi-path refinement networks for high-resolution semantic segmentation. Cvpr. 1(2):5.
  • Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Doll´ar P, Zitnick CL. 2014. Microsoft coco: common objects in context. In European Conference on Computer Vision. Zurich, Switzerland: Springer. p. 740–755.
  • Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE. p. 3431–3440.
  • Luo Z, Jodoin P-M, Li S-Z, Su S-Z. 2015. Traffic analysis without motion features. In Image Processing (ICIP), 2015 IEEE International Conference on. Québec City, Canada: IEEE. p. 3290–3294.
  • Mahadevan V, Vasconcelos N. 2010. Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell. 32(1):171–177. doi:10.1109/TPAMI.2009.112.
  • Maldonado-Basc´on S, Lafuente-Arroyo S, Gil-Jimenez P, G´omez-Moreno H, L´opez-Ferreras F. 2007. Road-sign detection and recognition based on support vector machines. IEEE Trans Intell Transp Sys. 8(2):264–278. doi:10.1109/TITS.2007.895311.
  • Mikhnevich M, Laurendeau D. 2014. Shape from silhouette in space, time and light domains. In Computer Vision Theory and Applications (VISAPP), 2014 international conference on; vol. 3. Lisbon, Portugal: IEEE. p. 368–377.
  • Mirza M, Osindero S. 2014. Conditional generative adversarial networks. Manuscript. Retrieved June 19, 2019, from https://arxiv. org/abs/1709.02023
  • Moeslund TB, Hilton A, Krüger V. 2006. A survey of advances in vision-based human motion capture and analysis. Comput Vision Image Understanding. 104(2–3):90–126. doi:10.1016/j.cviu.2006.08.002.
  • Moon N, Bullitt E, Van Leemput K, Gerig G. 2002. Automatic brain and tumor segmentation. In International Conference on Medical Image Computing and Computer Assisted Intervention. Tokyo, Japan: Springer. p. 372–379.
  • Mottaghi R, Chen X, Liu X, Cho N-G, Lee S-W, Fidler S, Urtasun R, Yuille A. 2014. The role of context for object detection and semantic segmentation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Colombus, OH: IEEE. p. 891–898.
  • Mündermann L, Corazza S, Andriacchi TP. 2006. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J Neuroeng Rehabil. 3(1):6. doi:10.1186/1743-0003-3-6.
  • Mundermann L, Corazza S, Chaudhari AM, Alexander EJ, Andriacchi TP. 2005. Most favorable camera configuration for a shape-from-silhouette markerless motion capture system for biomechanical analysis. In: Videometrics VIII. vol. 5665. International Society for Optics and Photonics. p. 56650T.
  • Newswanger A, Xu C. 2017. One-shot video object segmentation with iterative online fine-tuning. In CVPR Workshop. Honolulu, HI: IEEE. vol. 1.
  • Nobuhara S, Matsuyama T. 2006. Deformable mesh model for complex multi-object 3d motion estimation from multi-viewpoint video. in 3D Data Processing, Visualization, and Transmission, Third International Symposium on. Los Alamitos, CA: IEEE. p. 264–271.
  • Nobuhara S, Tsuda Y, Ohama I, Matsuyama T. 2009. Multi-viewpoint silhouette extraction with 3d context-aware error detection, correction, and shadow suppression. IPSJ Trans Comput Vision Appl. 1:242–259. doi:10.2197/ipsjtcva.1.242.
  • Olkkonen H, Pesola P. 1996. Gaussian pyramid wavelet transform for multiresolution analysis of images. Graphical Models Image Process. 58(4):394–398. doi:10.1006/gmip.1996.0032.
  • Peng C, Zhang X, Yu G, Luo G, Sun J. 2017. Large kernel matters—improve semantic segmentation by global convolutional network. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. Honolulu, HI: IEEE. p. 1743–1751.
  • Pham V-Q, Takahashi K, Naemura T. 2011. Foreground-background segmentation using iterated distribution matching. In Computer Vision and Pattern Recognition, 2011 IEEE Conference on. Colorado Springs, CO:  IEEE. p. 2113–2120.
  • Qi H, Zhang Z, Xiao B, Hu H, Cheng B, Wei Y, Dai J. 2017. Deformable convolutional networks–coco detection and segmentation challenge 2017 entry. In ICCV COCO Challenge Workshop. Venice, Italy. vol. 15.
  • Raja Y, McKenna SJ, Gong S. 1998. Segmentation and tracking using colour mixture models. In Asian Conference on Computer Vision. Hong Kong, China: Springer. p. 607–614.
  • Reinbacher C, Rüther M, Bischof H. 2012. Fast variational multi-view segmentation through backprojection of spatial constraints. Image Vis Comput. 30(11):797–807. doi:10.1016/j.imavis.2012.08.009.
  • Reinschmidt C, Van Den Bogert A, Nigg B, Lundberg A, Murphy N. 1997. Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech. 30(7):729–732. doi:10.1016/S0021-9290(97)00001-8.
  • Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Munich, Germany: Springer. p. 234–241.
  • Rotaru C, Graf T, Zhang J. 2008. Color image segmentation in hsi space for automotive applications. J Real-Time Image Process. 3(4):311–322. doi:10.1007/s11554-008-0078-9.
  • Rother C, Kolmogorov V, Blake A. 2004. Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM transactions on graphics (TOG). Vol. 23, no. 3. ACM New York, NY; p. 309–314.
  • Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. 2015. Imagenet large scale visual recognition challenge. Int J Comput Vis. 115(3):211–252. doi:10.1007/s11263-015-0816-y.
  • Sati M, de Guise JA, Larouche S, Drouin G. 1996. Quantitative assessment of skinbone movement at the knee. Knee. 3(3):121–138. doi:10.1016/0968-0160(96)00210-4.
  • Seide F, Li G, Yu D. 2011. Conversational speech transcription using context-dependent deep neural networks. In Twelfth annual conference of the international speech communication association. Florence, Italy.
  • Senior AW, Tian Y, Lu M. 2010. Interactive motion analysis for video surveillance and long term scene monitoring. In Asian Conference on Computer Vision. Queenstown, New Zealand: Springer. p. 164–174.
  • Sheets AL, Abrams GD, Corazza S, Safran MR, Andriacchi TP. 2011. Kinematics differences between the flat, kick, and slice serves measured using a markerless motion capture method. Ann Biomed Eng. 39(12):3011. doi:10.1007/s10439-011-0418-y.
  • Silberman N, Hoiem D, Kohli P, Fergus R. 2012. Indoor segmentation and support inference from rgbd images. In European Conference on Computer Vision. Florence, Italy: Springer. p. 746–760.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409 1556.
  • Song S, Lichtenberg SP, Xiao J. 2015. Sun rgb-d: A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE. p. 567–576.
  • Sormann M, Zach C, Karner K. 2006. Graph cut based multiple view segmentation for 3d reconstruction. In 3D Data Processing, Visualization, and Transmission, Third International Symposium on. Chapel Hill, NC: IEEE. p. 1085–1092.
  • Sun C, Shrivastava A, Singh S, Gupta A. 2017. Revisiting unreasonable effectiveness of data in deep learning era. In Computer Vision (ICCV), 2017 IEEE International Conference on. Venice, Italy: IEEE. p. 843–852.
  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE. p. 1–9.
  • Thoma M. 2016. A survey of semantic segmentation. arXiv Preprint arXiv:1602 06541.
  • Tian Y, Senior A, Lu M. 2012. Robust and efficient foreground analysis in complex surveillance videos. Mach Vis Appl. 23(5):967–983. doi:10.1007/s00138-011-0377-1.
  • Toyama K, Krumm J, Brumitt B, Meyers B. 1999. Wallflower: principles and practice of background maintenance. In Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on. Kerkyra, Greece. vol. 1; IEEE. p. 255–261.
  • Unzueta L, Nieto M, Cortés A, Barandiaran J, Otaegui O, Sànchez P. 2012. Adaptive multicue background subtraction for robust vehicle counting and classification. IEEE Trans Intell Transpo Sys. 13(2):527–540. doi:10.1109/TITS.2011.2174358.
  • Vacavant A, Chateau T, Wilhelm A, Lequi`evre L. 2012. A benchmark dataset for outdoor foreground/background extraction. In Asian Conference on Computer Vision. Daejeon, South Korea: Springer. p. 291–300.
  • Vlasic D, Baran I, Matusik W, Popovi´c J. 2008. Articulated mesh animation from multi-view silhouettes.In: ACM transactions on graphics (TOG). Vol. 27, no. 3. ACM New York, NY; p. 97.
  • Vosters L, Shan C, Gritti T. 2012. Real-time robust background subtraction under rapidly changing illumination conditions. Image Vis Comput. 30(12):1004–1015. doi:10.1016/j.imavis.2012.08.017.
  • Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. 2018. Deep learning for computer vision: A brief review. Comput Intell Neurosci. 2018:1–13. doi:10.1155/2018/7068349.
  • Wang Y, Luo Z, Jodoin P-M. 2017. Interactive deep learning method for segmenting moving objects. Pattern Recognit Lett. 96:66–75. doi:10.1016/j.patrec.2016.09.014.
  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 13(4):600–612. doi:10.1109/TIP.2003.819861.
  • Windolf M, Götzen N, Morlock M. 2008. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the vicon-460 system. J Biomech. 41(12):2776–2780. doi:10.1016/j.jbiomech.2008.06.024.
  • Winter DA. 2009. Biomechanics and motor control of human movement. Waterloo, Ontario: John Wiley & Sons.
  • Wojek C, Schiele B. 2008. A dynamic conditional random field model for joint labeling of object and scene classes. In European Conference on Computer Vision. Marseille, France: Springer. p. 733–747.
  • Xiao J, Wang J, Tan P, Quan L. 2007. Joint affinity propagation for multiple view segmentation. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. Rio de Janeiro, Brazil: IEEE. p. 1–7.
  • Xie S, Girshick R, Doll´ar P, Tu Z, He K. 2017. Aggregated residual transformations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. Honolulu, HI: IEEE. p. 5987–5995.
  • Zhang Z, Zhang X, Peng C, Cheng D, Sun J. 2018. Exfuse: enhancing feature fusion for semantic segmentation. arXiv Preprint arXiv:1804 03821.
  • Zhao H, Shi J, Qi X, Wang X, Jia J. 2017. Pyramid scene parsing network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE. p. 2881–2890.
  • Zhu H, Meng F, Cai J, Lu S. 2016. Beyond pixels: A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent. 34:12–27. doi:10.1016/j.jvcir.2015.10.012.
  • Zoph B, Le QV. 2016. Neural architecture search with reinforcement learning. arXiv Preprint arXiv:1611 01578.
  • Zoph B, Vasudevan V, Shlens J, Le QV. 2017. Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.