672
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Virtual reality for synergistic surgical training and data generation

, , , , , , , , & show all
Pages 366-374 | Received 22 Oct 2021, Accepted 25 Oct 2021, Published online: 26 Nov 2021

References

  • Campos C, Elvira R, Rodrguez JJG, Montiel JM, Tardós JD. 2021. Orb-slam3: an accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Trans Rob. 1–17. doi:https://doi.org/10.1109/TRO.2021.3075644.
  • Cartucho J, Tukra S, Li Y, Elson D S, and Giannarou S. 2020. Visionblender: a tool to efficiently generate computer vision datasets for robotic surgery. Comput Methods Biomech Biomed Eng: Imaging Visualization 9 (3): 331–338.doi:https://doi.org/10.1080/21681163.2020.1835546doi: .
  • Chan S, Li P, Locketz G, Salisbury K, Blevins NH. 2016. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery. Comput Assisted Surg. 21(1):85–101. doi:https://doi.org/10.1080/24699322.2016.1189966.
  • Chen RJ, Lu MY, Chen TY, Williamson DF, Mahmood F. 2021. Synthetic data in machine learning for medicine and healthcare. Nat Biomed Eng. 5(6):493–497. doi:https://doi.org/10.1038/s41551-021-00751-8.
  • Chen X, Sun P, Liao D. 2018. A patient-specific haptic drilling simulator based on virtual reality for dental implant surgery. Int J Comput Assist Radiol Surg. 13(11):1861–1870. doi:https://doi.org/10.1007/s11548-018-1845-0.
  • Conti F, Barbagli F, Morris D, Sewell C. 2005. Chai 3d: an open-source library for the rapid development of haptic scenes. IEEE World Haptic. 38(1):21–29.
  • Coumans E 2015. Bullet physics simulation. ACM SIGGRAPH 2015 Courses.
  • Ding AS, Lu A, Li Z, Galaiya D, Siewerdsen JH, Taylor RH, and Creighton FX. 2021. Automated registration-based temporal bone computed tomography segmentation for applications in neurotologic surgery. Otolaryngol Head Neck Surg. 01945998211044982 https://pubmed.ncbi.nlm.nih.gov/34491849/.
  • George A, De R. 2010. Review of temporal bone dissection teaching: how it was, is and will be. J Laryngol Otol. 124(2):119–125. doi:https://doi.org/10.1017/S0022215109991617.
  • Kruger J, Westermann R 2003. Acceleration techniques for gpu-based volume rendering. In: IEEE Visualization, 2003. VIS 2003. IEEE. p. 287–292.
  • Li Z, Gordon A, Looi T, Drake J, Forrest C, and Taylor RH 2020a. Anatomical mesh-based virtual fixtures for surgical robots. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Las Vegas, NV. IEEE. p. 3267–3273.
  • Li Z, Liu X, Drenkow N, Ding A, Creighton FX, Taylor RH, and Unberath M 2021. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Virtual. p. 6197–6206.
  • Li Z, Shahbazi M, Patel N, O’Sullivan E, Zhang H, Vyas K, Chalasani P, Deguet A, Gehlbach PL, Iordachita I, et al. 2020b. Hybrid robot-assisted frameworks for endomicroscopy scanning in retinal surgeries. IEEE Trans Med Rob Bionics. 2(2):176–187. doi:https://doi.org/10.1109/TMRB.2020.2988312
  • Locketz GD, Lui JT, Chan S, Salisbury K, Dort JC, Youngblood P, Blevins NH. 2017. Anatomy-specific virtual reality simulation in temporal bone dissection: perceived utility and impact on surgeon confidence. Otolaryngol Head Neck Surg. 156(6):1142–1149. doi:https://doi.org/10.1177/0194599817691474.
  • Long Y, Li Z, Yee CH, Ng CF, Taylor RH, Unberath M, and Dou Q. 2021. E-dssr: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 Strasbourg, France (Cham: Springer International Publishing) 415–425. doi:https://doi.org/10.1007/978-3-030-87202-1_40.
  • Lui JT, Hoy MY. 2017. Evaluating the effect of virtual reality temporal bone simulation on mastoidectomy performance: a meta-analysis. Otolaryngol Head Neck Surg. 156(6):1018–1024. doi:https://doi.org/10.1177/0194599817698440.
  • Mahmood F, Borders D, Chen RJ, McKay GN, Salimian KJ, Baras AS, Durr N. 2020. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans Med Imaging. 39(11):3257–3267. doi:https://doi.org/10.1109/TMI.2019.2927182.
  • Mezger U, Jendrewski C, Bartels M. 2013. Navigation in surgery. Langenbeck’s Archives of Surgery. 398(4):501–514. doi:https://doi.org/10.1007/s00423-013-1059-4.
  • Munawar A, Wang Y, Gondokaryono R, and Fischer GS 2019. A real-time dynamic simulator and an associated front-end representation format for simulating complex robots and environments. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Macau, China:1875–1882.
  • Munawar A, Wu JY, Taylor RH, Kazanzides P, Fischer GS. 2021. A framework for customizable multi-user teleoperated control. IEEE Rob Autom Lett. 6(2):3256–3263. doi:https://doi.org/10.1109/LRA.2021.3062604.
  • Rivoir D, Pfeiffer M, Docea R, Kolbinger F, Riediger C, Weitz J, and Speidel S. 2021. Long-term temporally consistent unpaired video translation from simulated surgical 3d data International Conference on Computer Vision (ICCV) 2021 Virtual. 210317204.
  • Rublee E, Rabaud V, Konolige K, and Bradski G 2011. Orb: an efficient alternative to sift or surf. In: 2011 International conference on computer vision Barcelona, Spain. Ieee. p. 2564–2571.
  • Ruspini D, Khatib O. 2001. Haptic display for human interaction with virtual dynamic environments. J Robot Syst. 18(12):769–783. doi:https://doi.org/10.1002/rob.8115.
  • Schneider D, Hermann J, Mueller F, Braga GOB, Anschuetz L, Caversaccio M, Nolte L, Weber S, and Klenzner T. 2020. Evolution and stagnation of image guidance for surgery in the lateral skull: a systematic review 1989–2020. Front Surg 7 .
  • Unberath M, Zaech JN, Lee SC, Bier B, Fotouhi J, Armand M, and Navab N 2018. Deepdrr–a catalyst for machine learning in fluoroscopy-guided procedures. In: International Conference on Medical Image Computing and Computer-Assisted Intervention Granada, Spain. Springer. p. 98–106.
  • Zisimopoulos O, Flouty E, Stacey M, Muscroft S, Giataganas P, Nehme J, Chow A, Stoyanov D. 2017. Can surgical simulation be used to train detection and classification of neural networks? Healthcare Technol Lett. 4(5):216–222. doi:https://doi.org/10.1049/htl.2017.0064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.