445
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Interactive Cues on the Perception of Angiographic Volumes in Virtual Reality

ORCID Icon, ORCID Icon & ORCID Icon
Pages 357-365 | Received 22 Oct 2021, Accepted 25 Oct 2021, Published online: 08 Nov 2021

References

  • Abhari K, Baxter JSH, Eagleson R, Peters T, Ribaupierre S. 2012. Perceptual enhancement of arteriovenous malformation in MRI angiography displays. In C. K. Abbey & C. R. Mello-Thoms (Eds.), Medical imaging 2012: image perception, observer performance, and technology assessment. Vol. 8318. Feb International Society for Optics and Photonics; p. 831809. SPIE. [accessed 2021 Apr 26]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8318/831809/Perceptual-enhancement-of-arteriovenous-malformation-in-MRI-angiography-displays/10.1117/12.911687.short.
  • Bailey M, Clark D. 1998. Using chromadepth to obtain inexpensive single-image stereovision for scientific visualization. J Graphics Tools. 3(3):1–9. Taylor & Francis _eprint: [accessed 2021 Apr 27]. DOI:https://doi.org/10.1080/10867651.1998.10487491.
  • Blinn JF 1977. Models of light reflection for computer synthesized pictures. Proceedings of the 4th annual conference on Computer graphics and interactive techniques; Jul; New York, NY, USA. Association for Computing Machinery. p. 192–198. SIGGRAPH ‘77; [accessed 2021 Apr 25]. DOI:https://doi.org/10.1145/563858.563893.
  • Drouin S, Collins DL. 2018. PRISM: an open source framework for the interactive design of GPU volume rendering shaders. PLOS ONE. 13(3):e0193636. Public Library of Science; [accessed 2021 Apr 26]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193636.
  • Drouin S, Collins L, Kersten-Oertel M. 2018. Interaction in augmented reality image-guided surgery. In: Mixed and augmented reality in medicine. 1st ed. Boca Raton: CRC Press; p. 99–114.
  • Drouin S, Giovanni DAD, Kersten-Oertel M, Collins DL 2020. Interaction driven enhancement of depth perception in angiographic volumes. IEEE Transactions on Visualization and Computer Graphics. 26( 6):2247–2257.
  • Drouin S, Kersten-Oertel M, Louis Collins D. 2015. Interaction-Based registration correction for improved augmented reality overlay in neurosurgery. In: Linte CA, Yaniv Z, Fallavollita P, editors. Augmented environments for computer-assisted interventions. Cham: Springer International Publishing; p. 21–29. Lecture Notes in Computer Science.
  • Harman KL, Humphrey GK, Goodale MA. 1999. Active manual control of object views facilitates visual recognition. Current Biol. 9(22):1315–1318. [accessed 2021 Jul 15]. https://www.sciencedirect.com/science/article/pii/S0960982200800536.
  • Heinrich F, Apilla V, Lawonn K, Hansen C, Preim B, Meuschke M. 2021. Estimating depth information of vascular models: a comparative user study between a virtual reality and a desktop application. Comput Graph. 98:210–217. [accessed 2021 Jul 14]. https://www.sciencedirect.com/science/article/pii/S0097849321001138.
  • Heinrich F, Bornemann K, Lawonn K, Hansen C. 2020. Interacting with medical volume data in projective augmented reality. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L, editors. Medical image computing and computer assisted intervention – MICCAI 2020. Cham: Springer International Publishing; p. 429–439. Lecture Notes in Computer Science.
  • Kersten-Oertel M, Chen SJS, Collins DL 2014. An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery. IEEE Transactions on Visualization and Computer Graphics. 20( 3):391–403.
  • Kreiser J, Hermosilla P, Ropinski T 2018. Void space surfaces to convey depth in vessel visualizations. arXiv:180607729 [cs]. ArXiv: 1806.07729; [accessed 2021 Jul 14]. http://arxiv.org/abs/1806.07729.
  • Kruger J, Westermann R 2003. Acceleration techniques for GPU-based volume rendering. In: IEEE Visualization, 2003. VIS 2003; Oct. p. 287–292.
  • Laha B, Bowman DA 2013. Volume cracker: a bimanual 3D interaction technique for analysis of raw volumetric data. Proceedings of the 1st symposium on Spatial user interaction; Jul; New York, NY, USA. Association for Computing Machinery. p. 61–68. SUI ‘13; [accessed 2021 Apr 23]. DOI:https://doi.org/10.1145/2491367.2491368.
  • Laha B, Bowman DA, Socha JJ 2016. Bare-Hand volume cracker for raw volume data analysis. Frontiers in Robotics and AI. 3. Frontiers; [accessed 2021 Apr 23]. https://www.frontiersin.org/articles/10.3389/frobt.2016.00056/full.
  • Lawonn K, Luz M, Hansen C. 2017. Improving spatial perception of vascular models using supporting anchors and illustrative visualization. Comput Graph. 63:37–49. [accessed 2021 Aug 25]. https://www.sciencedirect.com/science/article/pii/S0097849317300171.
  • McGuffin M, Tancau L, Balakrishnan R 2003. Using deformations for browsing volumetric data. In: IEEE Visualization, 2003. VIS 2003; Oct. p. 401–408.
  • Preim B, Baer A, Cunningham D, Isenberg T, Ropinski T. 2016. A survey of perceptually motivated 3D visualization of medical image data. Comput Graph Forum. 35(3):501–525. _eprint: [accessed 2021 Apr 26] https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12927.
  • Ropinski T, Steinicke F, Hinrichs K. 2006. Visually supporting depth perception in angiography imaging. In: Butz A, Fisher B, Krüger A, Olivier P, editors. Smart Graphics. Berlin (Heidelberg): Springer; p. 93–104. Lecture Notes in Computer Science.
  • Simons DJ, Wang RF, Roddenberry D. 2002. Object recognition is mediated by extraretinal information. Percept Psychophys. 64(4):521–530. [accessed 2021 Jul 15]. DOI:https://doi.org/10.3758/BF03194723.
  • Toulouse A, Thiele S, Herkommer A. 2019. Virtual reality headset using a gaze-synchronized display system. In B. C. Kress (Ed.), Optical design challenge. Vol. 11040. Feb International Society for Optics and Photonics; p. 1104009. SPIE. [accessed 2021 Apr 26] https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11040/1104009/Virtual-reality-headset-using-a-gaze-synchronized-display-system/10.1117/12.2523920.short.
  • Vienne C, Masfrand S, Bourdin C, Vercher JL 2020. Depth perception in virtual reality systems: effect of screen distance, environment richness and display factors. IEEE Access. 8:29099–29110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.