573
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Saliency-based segmentation of dermoscopic images using colour information

ORCID Icon
Pages 172-186 | Received 16 Aug 2020, Accepted 03 Nov 2021, Published online: 09 Dec 2021

References

  • Achanta R, Hemami S, Estrada F, and Susstrunk S 2009. Frequency-tuned salient region detection. In Proc. 2009 IEEE Conf. on Computer Vision and Pattern Recognition June 20-25 (IEEE) Miami, FL, p. 1507–1604.
  • Agarwal A, Issac A, Dutta MK, Riha K, and Uher V 2017. Automated skin lesion segmentation using K-Means clustering from digital dermoscopic images 2017 40th International Conference on Telecommunications and Signal Processing (TSP) July 5-7 Barcelona, Spain, p. 743–748
  • Ahn E, Kim J, Bi L, Kumar A, Li C, Fulham M, Feng DD. 2017. Saliency-Based lesion segmentation via background detection in dermoscopic images. IEEE J Biomed Health Inf. 21(6):1685–1693. doi:https://doi.org/10.1109/JBHI.2017.2653179.
  • Aksac A, Ozyer T, Alhajj R. 2017. Complex networks driven salient region detection based on superpixel segmentation. Pattern Recognit. 66:268–279. doi:https://doi.org/10.1016/j.patcog.2017.01.010.
  • Arcelli C, Brancati N, Frucci M, Ramella G, Sanniti Di Baja G. 2011. A fully automatic one-scan adaptive zooming algorithm for color images. Signal Processing. 91(1):61–71. doi:https://doi.org/10.1016/j.sigpro.2010.06.007.
  • Barata C, Celebi ME, Marques JS. 2015. Improving dermoscopy image classification using color constancy. IEEE J Biomed Health Inform. 19(3):1146–1152. doi:https://doi.org/10.1109/JBHI.2014.2336473.
  • Barcelos CAZ, Pires VB. 2009. An automatic based nonlinear diffusion equations scheme for skin lesion segmentation. Appl Math Comput. 215:251–261.
  • Binder M, Schwarz M, Winkler A, Steiner, A, Kaider, A, Wolff, K, and Pehamberger, H, et al. 1995. Epiluminescence microscopy: a useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch Dermatol. 131(3):286–291. doi:https://doi.org/10.1001/archderm.1995.01690150050011.
  • Bruni V, Ramella G, and Vitulano D. 2017. Perceptual-based color quantization. In: Battiato S, Gallo, G, Schettini, R, and Stanco, F, et al, editors. Image analysis and processing - ICIAP 2017 . Lecture Notes in Computer Science 10484 Berlin: Springer; p. 671–681.
  • Bruni V, Ramella G, Vitulano D, et al. 2015. Automatic perceptual color quantization of dermoscopic images. In: Braz J, editors. VISAPP 2015. Vol. 1. Scitepress Science and Technology Publications; p. 323–330.
  • Cavalcanti PG, Scharcanski J. 2013. A coarse-to-fine approach for segmenting melanocytic skin lesions in standard camera images, Comput. Methods Programs Biomed. 112(3):684–693. doi:https://doi.org/10.1016/j.cmpb.2013.08.010.
  • Celebi ME, Aslandogan YA, Stoecker WV, Iyatomi H, Oka H, Chen X. 2007. Unsupervised border detection in dermoscopy images. Skin Res Tech. 13(4):454–462. doi:https://doi.org/10.1111/j.1600-0846.2007.00251.x.
  • Celebi ME, Kingravi HA, Iyatomi H, Aslandogan YA, Stoecker, WV, Moss, RH, Malters, JM, Grichnik, JM, Marghoob, AA, and Rabinovitz, HS, et al. 2008. Border detection in dermoscopy images using statistical region merging. Skin Res Tech. 14(3):347–353. doi:https://doi.org/10.1111/j.1600-0846.2008.00301.x.
  • Celebi ME, and Schaefer G, editors. 2013. Color medical image analysis. Vol. 6 Lecture Notes in Computational Vision and Biomechanics (Berlin: Springer) .
  • Cheng MM, Mitra NJ, Huang X, Torr PHS, Hu SM. 2015. Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell. 37(3):569–582. doi:https://doi.org/10.1109/TPAMI.2014.2345401.
  • Dehghani M, Ghiasi M, Niknam T, Kavousi-Fard A, Shasadeghi M, Ghadimi N, Taghizadeh-Hesary F. 2021. Blockchain-Based securing of data exchange in a power transmission system considering congestion management and socialwelfare. Sustainability. 13(1):90. doi:https://doi.org/10.3390/su13010090.
  • Dekker A. 1994. Kohonen neural networks for optimal colour quantization. Netw Comput Neural Syst. 5(3):351–367. doi:https://doi.org/10.1088/0954-898X_5_3_003.
  • Fan H, Xie F, Li Y, Jiang Z, Liu J. 2017. Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Comput Biol Med. 85:75–85. doi:https://doi.org/10.1016/j.compbiomed.2017.03.025.
  • Ganzeli HS, Bottesini JG, Paz LO, and Ribeiro MFS. 2011. SKAN: skin scanner – system for skin cancer detection using adaptive techniques. IEEE Lat. Am. Trans, 9:206–212.
  • Garnavi R, Aldeen M, Celebi ME, Bhuiyan A, Dolianitis C, Varigos G. 2011. Automatic segmentation of dermoscopy images using histogram thresholding on optimal color channels. Int J Med Med Sci. 1(2):126–134.
  • Glaister J, Amelard R, Wong A, Clausi D. 2013. MSIM: multistage illumination modeling of dermatological photographs for illumination-corrected skin lesion analysis. IEEE Trans Biomed Eng. 60(7):1873–1883. doi:https://doi.org/10.1109/TBME.2013.2244596.
  • Guarracino MR, Maddalena L. 2019. SDI+: a novel algorithm for segmenting dermoscopic images. IEEE J Biomed Health Inf. 23(2):481–488. doi:https://doi.org/10.1109/JBHI.2018.2808970.
  • Gutman D, Codella NCF, Celebi ME, Helba B, Marchetti M, Mishra N, Halpern A 2016. Skin lesion analysis toward melanoma detection: A challenge at the International Symposium on Biomedical Imaging (ISBI) 2016. hosted by the International Skin Imaging Collaboration (ISIC), arXiv:1605.01397 [cs.CV].
  • Harel J, Koch C, and Perona P 2007. Graph-Based visual saliency. In NIPS 2006, Advances in Neural Information Processing Systems December 4-7 Vancouver, British Columbia, Canada, vol.19, p. 545–552.
  • Hu K, Liu S, Zhang Y, Cao C, Xiao F, Huang W, Gao X 2019. Automatic segmentation of dermoscopy images using saliency combined with adaptive thresholding based on wavelet transform. Multimedia Tools and Applications, p. 1–18.
  • ISIC. 2016. ISIC Archive: The International Skin Imaging Collaboration: Melanoma Project, ISIC, 5 Jan 2016. [Online]. Available: https://isic-archive.com/#.
  • Itti L, Koch C, Niebur E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans on Patt Anal and Mach Intell. 20(11):1254–1259. doi:https://doi.org/10.1109/34.730558.
  • Iyatomi H, Oka H, Celebi ME, Hashimoto M, Hagiwara M, Tanaka M, and Ogawa , K, et al. 2008. An improved internet-based melanoma screening system with dermatologist-like tumor area extraction algorithm. Comput Med Imaging Graph. 32(7):566–579. doi:https://doi.org/10.1016/j.compmedimag.2008.06.005.
  • Kaymak R, Kaymak C, Ucar A. 2020. Skin lesion segmentation using fully convolutional networks: acomparative experimental study. Expert Syst Appl. 161:113742. doi:https://doi.org/10.1016/j.eswa.2020.113742.
  • Korotkov K, Garcia R. 2012. Computerized analysis of pigmented skin lesions: a review. Artif Intell Med. 56(2):69–90. doi:https://doi.org/10.1016/j.artmed.2012.08.002.
  • Lee T, Ng V, Gallagher R, Coldman A, McLean D. 1997. Dullrazor: a software approach to hair removal from images. Comput Biol Med. 27(6):533–543. doi:https://doi.org/10.1016/S0010-4825(97)00020-6.
  • Liu J, Chen C, Liu Z, Jermsittiparsert K, Ghadimi N. 2020. An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles. J Energy Storage. 27:101057. doi:https://doi.org/10.1016/j.est.2019.101057.
  • Ma Z Z, Tavares JMRS. 2016. A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J Biomed Health Inf. 20(2):615–623. doi:https://doi.org/10.1109/JBHI.2015.2390032.
  • Masood A, and Al-Jumaily AA. 2013. Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int J Biom Imag 2013 . 22. Hindawi Publishing Corporation, Article ID 323268.
  • Mehrpooya M, Ghadimi N, Marefati M, Ghorbanian SA. 2021. Numerical investigation of a new combined energy system includes parabolic dish solar collector, Stirling engine and thermoelectric device. Int J Energy Res. 45(11):16436–16455. doi:https://doi.org/10.1002/er.6891.
  • Mendonca T, Ferreira PM, Marques JS, Marcal AR, Rozeira J. 2015. PH2 –A public database for the analysis of dermoscopic images. In: Celebi ME, Mendonca T, Marques JS, editors. Dermoscopy image analysis. Boca Raton: CRC Press, p. 419–439. https://www.fc.up.pt/addi/ph2%20database.html
  • Menzies SW, Bischof L, Talbot H, Gutenev A, Avramidis M, Wong L, Lo SK, Mackellar G, Skladnev V, McCarthy W, et al. 2005. The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma. Arch Dermatol. 141(11):1388–1396. doi:https://doi.org/10.1001/archderm.141.11.1388.
  • Mishra NK, Celebi ME 2016. An Overview of Melanoma Detection in Dermoscopy Images Using Image Processing and Machine Learning. arXiv:1601.07843 [cs.CV].
  • Okur E, Turkan M. 2018. A survey on automated melanoma detection. Eng Appl Artif Intell. 73:50–67. doi:https://doi.org/10.1016/j.engappai.2018.04.028.
  • Oliveira RB, Papa JP, Pereira AS, Tavares JMRS. 2016. Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Applic. 29(3):613–636. doi:https://doi.org/10.1007/s00521-016-2482-6.
  • Olugbara OO, Taiwo TB, Heukelman D. 2018. Segmentation of melanoma skin lesion using perceptual color difference saliency with morphological analysis. Math Probl Eng. 2018:1–19. ID 1524286. doi:https://doi.org/10.1155/2018/1524286.
  • Parsian A, Ramezani M, Ghadimi N. 2017. A hybrid neural network-gray wolf optimization algorithm for melanoma detection. Biomed Res. 28(8):3408–3411.
  • Pereira PMM, Fonseca-Pinto R, Paiva RP, Assuncao PAA, Tavora LMN, Thomaz LA, Faria SMM. 2020. Dermoscopic skin lesion image segmentation based on local binary pattern clustering: comparative study. Biomed Signal Process Control. 59:101924. doi:https://doi.org/10.1016/j.bspc.2020.101924.
  • Perrinaud A, Gaide O, French LE, Saurat J-H, Marghoob AA, Braun RP. 2007. Can automated dermoscopy image analysis instruments provide added benefit for the dermatologist? A study comparing the results of three systems. Br J Dermatol. 157(5):926–933. doi:https://doi.org/10.1111/j.1365-2133.2007.08168.x.
  • Plataniotis KN, Venetsanopoulos AN 2013. Color Image Processing and Applications, Springer Science & Business Media.
  • Premaladha J, Lakshmi Priya M, Sujitha S, Ravichandran KS. 2015. A survey on color image segmentation techniques for melanoma diagnosis. Indian J Sci Technol. 8(22): IPL0265.
  • Quintana J, Garcia R, Neumann L. 2011. A novel method for color correction in epiluminescence microscopy. Comput Med Image Graph. 35(7):646–652. doi:https://doi.org/10.1016/j.compmedimag.2011.03.006.
  • Ramella G. 2021a. Hair removal combining saliency, shape and color. Applied Sci. 11(1):447–474. doi:https://doi.org/10.3390/app11010447.
  • Ramella G. 2021b. Evaluation of quality measures for color quantization. Multimed Tools Appl. 80(21–23):32975–33009. doi:https://doi.org/10.1007/s11042-021-11385-y.
  • Ramella G 2020. Automatic skin lesion segmentation based on saliency and color. In VISAPP 2020 La Valletta, Malta, Farinella GM, Radeva, P, and Braz, J, et al editors. Scitepress Science and Technology Publications, vol. 4, p. 452–459.
  • Ramella G, Sanniti Di Baja G. 2013b. A new technique for color quantization based on histogram analysis and clustering. Int J Patt Recog Artif Intell. 27(3):1–17. doi:https://doi.org/10.1142/S0218001413600069.
  • Ramella G, and Sanniti Di Baja G. 2016a. A new method for color quantization. In Proc. 12th International Conference on Signal Image Technology & Internet-Based Systems - SITIS 2016 Naples, Italy, , et al editors. IEEE Computer Society, p. 1–6.
  • Ramella G, and Sanniti Di Baja G. 2016b. From color quantization to image segmentation. In Proc. 12th Int. Conf. on Signal Image Technology & Internet-Based Systems - SITIS 2016 Naples, Italy, , et al editors. IEEE Computer Society, p. 798–804.
  • Ramella G, and Sanniti di Baja G. 2013a. Image segmentation based on representative colors and region merging. In: Carrasco-Ochoa JA, Martínez-Trinidad, JF, Rodríguez, JS, and Sanniti di Baja, G, et al, editors. Pattern Recognition. Lecture Notes in Computer Science 7914 Berlin: Springer; p. 175–184.
  • Ramella G, and Sanniti Di Baja G. 2011. Color histogram-based image segmentation. In: Real P, Diaz-Pernil D, Molina-Abril H, Berciano A, and Kropatsch W, editors. Computer analysis of images and patterns. Lecture Notes in Computer Science 6854, Berlin: Springer, part I; p. 76–83.
  • Razmjooy N, Sheykhahmad FR, Ghadimi N. 2018. A hybrid neural network–world cup optimization algorithm for melanoma detection. Open Med. 13(1):9–16. doi:https://doi.org/10.1515/med-2018-0002.
  • Rother C, Kolmogorov V, Blake A. 2004. GrabCut’: interactive foreground extraction using iterated graph cuts. ACM Trans Graph. 23(3):309–314. doi:https://doi.org/10.1145/1015706.1015720.
  • Scott Henning MJ, Dusza SW, Wang SQ, Marghoob AA, Rabinovitz HS, Polsky D, Kopf AW. 2007. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J Am Acad Dermatol. 56(1):45–52. doi:https://doi.org/10.1016/j.jaad.2006.09.003.
  • Silveira M, Nascimento JC, Marques JS, Marçal AR, Mendonça T, Yamauchi S, Maeda J, Rozeira J. 2009. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process. 3(1):35–45. doi:https://doi.org/10.1109/JSTSP.2008.2011119.
  • Soyer HP, Argenziano G, Zalaudek I, Corona R, Sera F, Talamini R, Barbato F, Baroni A, Cicale L, Di Stefani A, et al. 2004. Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology. 208(1):27–31. doi:https://doi.org/10.1159/000075042.
  • Tan TY, Zhang L, Neoh SC, Lim CP. 2018. Intelligent skin cancer detection using enhanced particle swarm optimization. Knowl Syst. 158:118–135. doi:https://doi.org/10.1016/j.knosys.2018.05.042.
  • Wang H, Moss RH, Chen X, Stanley RJ, Stoecker WV, Celebi ME, Malters JM, Grichnik JM, Marghoob AA, Rabinovitz HS, et al. 2011. Modified watershed technique and post-processing for segmentation of skin lesions in dermoscopy images. Comput Med Imaging Graph. 35(2):116–120. doi:https://doi.org/10.1016/j.compmedimag.2010.09.006.
  • Xu Z, Sheykhahmad FR, Ghadimi N, Razmjooy N. 2020. Computer-aided diagnosis of skin cancer based on soft computing techniques. Open Med. 15(1):860–871. doi:https://doi.org/10.1515/med-2020-0131.
  • Yang C, Zhang L, Lu H, Ruan X, and Yang MH 2013. Saliency detection via graph-based manifold ranking. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition Portland, OR, USA, p. 3166–3173.
  • Yang Z, Ghadamyari M, Khorramdel H, Alizadeh SMS, Pirouzi S, Milani M, Banihashemi F, Ghadimi N. 2021. Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems. Renew Sust Energ Rev. 148:111295. doi:https://doi.org/10.1016/j.rser.2021.111295.
  • Yasmin JHJ, Sathik MM, and Beevi SZ 2011. Robust segmentation algorithm using LOG edge detector for effective border detection of noisy skin lesions. 2011 Int. Conf. on Computer, Communication and Electrical Technology Tirunelveli, Tamilnadu, India, pp. 60–65.
  • Ye H, Jin G, Fei W, Ghadimi N. 2020. High step-up interleaved dc/dc converter with high efficiency. Enegr Source Part A. doi:https://doi.org/10.1080/15567036.2020.1716111.
  • Yu L, Chen H, Dou Q, Qin J, Heng PA. 2017. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 36(4):994–1004. doi:https://doi.org/10.1109/TMI.2016.2642839.
  • Zhang Q, Lin J, Tao Y, Li W, Shi Y. 2017. Salient object detection via color and texture cues. Neurocomputing. 243:35–48. doi:https://doi.org/10.1016/j.neucom.2017.02.064.
  • Zhou H, Li X, Schaefer G, Celebi ME, Miller P. 2013. Mean shift based gradient vector flow for image segmentation. Comput Vis Image Understanding. 117(9):1004–1016. doi:https://doi.org/10.1016/j.cviu.2012.11.015.
  • Zhu W, Liang S, Wei Y, and Sun J 2014. Saliency optimization from robust background detection. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition Columbus, Ohio, p. 2814–2821.
  • Zortea M, Flores E, Scharcanski J. 2017. A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recogn. 64:92–104. doi:https://doi.org/10.1016/j.patcog.2016.10.031.
  • Zortea M, Skrøvseth SO, Schopf TR, Kirchesch HM, Godtliebsen F. 2011. Automatic segmentation of dermoscopic images by iterative classification. Int J Biomed Imag. 2011:19. ID 972648. doi:https://doi.org/10.1155/2011/972648.
  • Zouridakis G, Duvic MDM, Mullani NA 2005. Transillumination imaging for early skin cancer detection. Tech. Rep. Biomedical Imaging Lab, Department of Computer Science, University of Houston, Houston (Tex, USA).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.