150
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Human gait recognition using firefly template segmentation

, & ORCID Icon
Pages 565-575 | Received 19 May 2021, Accepted 27 Nov 2021, Published online: 22 Dec 2021

References

  • Aggarwal H, Vishwakarma DK 2017. Covariate conscious approach for gait recognition based upon Zernike moment invariants. IEEE Transactions on Cognitive and Developmental Systems; vol. 10, p. 397–407. 2. 10.1109/TCDS.2017.2658674.
  • Aggarwal, H., & Vishwakarma, D. K. 2016. Covariate conscious approach for Gait recognition based upon Zernike moment invariants http://arxiv.org/abs/1611.06683
  • Ascenso G, Yap MH, Allen T, Choppin SS, Payton C. 2020. A review of silhouette extraction algorithms for use within visual hull pipelines. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 8(6): 649–670. doi:10.1080/21681163.2020.1790040.
  • Bashir K, Xiang T, Goang S. 2010. Gait recognition without subject cooperation. Pattern Recognit Lett. 31(13): 2052–2060. doi:10.1016/j.patrec.2010.05.027.
  • Binsaadoon AG, El-Alfy ESM. 2016. FLGBP: improved method for gait representation and recognition. Proceedings of World Symposium on Computer Applications & Research, Cairo, Egypt; p. 59–64. 10.1109/WSCAR.2016.29.
  • Chao H, He Y, Zhang J, Feng J. 2019. GaitSet: regarding gait as a set for cross-view gait recognition. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA; Vol. 33, p. 8126–8133. doi:10.1609/aaai.v33i01.33018126.
  • Chao H, Wang K, He Y, Zhang J, Feng J. 2021. GaitSet: cross-view gait recognition through utilizing gait as a deep set. IEEE Transactions On Pattern Analysis and Machine Intelligence, 1–12 doi:10.1109/TPAMI.2021.3057879.
  • Choudhury SD, Tjahjadi T. 2015. Robust view-invariant multi-scale gait recognition. Pattern Recognit. 48(3): 798–811. doi:10.1016/j.patcog.2014.09.022.
  • Chtourou I, Fendri E, Hammami M. 2018. Walking direction estimation for gait-Based applications. Procedia Comput Sci. 126: 759–767. doi:10.1016/j.procs.2018.08.010.
  • Dash S, Abraham A, Luhach AK. 2020. Hybrid chaotic firefly decision-making model for parkinson’s disease diagnosis. International Journal of Distributed Sensor Networks. 16(1): 1–18. doi:10.1177/1550147719895210.
  • Dhiman C, Vishwakarma DK. 2019a. A review of state-of-the-art techniques for abnormal human activity recognition. Eng Appl Artif Intell. 77: 21–45. doi:10.1016/j.engappai.2018.08.014.
  • Dhiman C, Vishwakarma DK. 2019b. A robust framework for abnormal human action recognition using R -Transform and Zernike moments in depth videos. IEEE Sens J. 1–8. doi:10.1109/JSEN.2019.2903645.
  • Dhiman C, Vishwakarma DK. 2020. View-Invariant deep architecture for human action recognition using two-Stream motion and shape temporal dynamics. IEEE Transactions on Image Processing; vol. 29, p. 3835–3844. doi:10.1109/TIP.2020.2965299.
  • Dupuis Y, Savatier X, Vasseur P. 2013. Feature subset selection applied to model-free gait recognition. Image Vis Comput. 31(8): 580–591. doi:10.1016/j.imavis.2013.04.001.
  • Dyce W, Rodriguez N, Lange B, Andary S, Seilles A. 2014. Tabu search for human pose recognition. IS&T/SPIE Electronic Imaging. 9013: 1–8. doi:10.1117/12.2040563.
  • Emary E, Zawbaa HM, Ghany KKA, Hassanien AE, Parv B. 2015. Firefly optimization algorithm for feature selection. Proceedings of the 7th Balkan Conference on Informatics Conference, Craiova, Romania; Vol. 26, p. 1–7. doi:10.1145/2801081.2801091.
  • Eren Y, Ibrahim BK, Ustoglu I. 2017. Introduction to optimization. Optimization in Renewable Energy Systems. 27–74. doi:10.1016/B978-0-08-101041-9.00002-8.
  • Fan C, Peng Y, Cao C, Liu X, Hou S, Chi J, Huang Y, Li Q, He Z. 2020. GaitPart: temporal part-Based model for gait recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA; p. 14225–14233. doi:10.1109/CVPR42600.2020.01423.
  • Farahani SM, Abshouri AA, Nasiri B, Meybodi MR. 2011. A gaussian firefly algorithm. Int J Machine Learning and Computing. 1(5): 448–453. doi:10.7763/IJMLC.2011.V1.67.
  • Gandomi AH, Yang XS, Alavi AH. 2011. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput. 29: 17–35. doi:10.1007/s00366-012-0308-4.
  • Gao F, Tian T, Yao T, Zhang Q. 2021. Human gait recognition based on multiple feature combination and parameter optimization algorithms. Comput Intell Neurosci. 2021: 1–14. doi:10.1155/2021/6693206.
  • Guru VGM, Kamalesh VN, Dinesh R. 2016. Human gait recognition using four directional variations of gradient gait energy image. International Conference on Computing, Communication, and Automation, Greater Noida, India; p. 1367–1371. 10.1109/CCAA.2016.7813931.
  • Han J, Bhanu B. 2006. Individual recognition using gait energy image IEEE Transactions on Pattern Analysis and Machine Intelligence. 28: 316–332. doi:10.1109/TPAMI.2006.38.
  • Hema M, Babulu K, Balaji N. 2020. Individual gait recognition using particle swarm template segmentation. International Journal of Advanced Science and Technology. 29(6s): 2684–2697. Retrieved from https://sersc.org/journals/index. php/IJAST/ article/view/12186.
  • Isaac ERHP, Elias S, Srinivasan R, Easwarakumar KS. 2017. View-invariant gait recognition through genetic template segmentation. IEEE Signal Processing Letters. 24: 1188–1192. doi:10.1109/LSP.2017.2715179.
  • Iztok F, Yang XS, Dusan F, Iztok FJ. 2014. Firefly algorithm: a brief review of the expanding literature. Studies in Computational Intelligence. 516: 347–360. doi:10.1007/978-3-319-02141-6_17.
  • Juan CPI, Adriano AGS, Marco HT, Hermano IK. 2020. Hybrid simulated annealing and genetic algorithm for optimization of a rule-based algorithm for detection of gait events in impaired subjects. International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA; p. 1167–1171. doi:10.1109/AIM43001.2020.9158938.
  • Kumar A, Khorwal R. 2017. Firefly algorithm for feature selection in sentiment analysis. Advances in Intelligent Systems and Computing. 556: 693–703. doi:10.1007/978-981-10-3874-7_66.
  • Kumar S.N., Lenin Fred A., Ajay Kumar H., Sebastin Varghese P. et al. 2019. Firefly Optimization Based Improved Fuzzy Clustering for CT/MR Image Segmentation. In: Hemanth J., and Balas V. (eds) Nature Inspired Optimization Techniques for Image Processing Applications. Intelligent Systems Reference Library, vol 150. Springer, Cham. 10.1007/978-3-319-96002-9_1
  • Liu L, Yin Y, Qin W. 2012. Gait recognition based on outermost contour. International Journal of Computational Intelligence Systems. 4(5): 1090–1099. doi:10.1080/18756891.2011.9727857.
  • Maza S, Zouache D 2019. Binary firefly algorithm for feature selection in classification. International Conference on Theoretical and Applicative Aspects of Computer Science, Skikda, Algeria; p. 1–6. doi:10.1109/ICTAACS48474.2019.8988137.
  • Nayak J, Bighnaraj N, Dinesh P, Kanithi V, Dash PB. 2020a. Firefly algorithm in biomedical and health care: advances, issues, and challenges. SN Computer Science. 1(6): 1–36. doi:10.1007/s42979-020-00320-x.
  • Rida I, Bouridane A, Marcialis GL, Tuveri P. 2015. Improved human gait recognition. 18th International Conference on Image Analysis and Processing, Genoa, Italy; p. 119–129. 10.1007/978-3-319-23234-8-12.
  • Rida I, Jiang X, Marcialis GL. 2016. Human body part selection by group lasso of motion for model-free gait recognition. IEEE Signal Processing Letters. 23: 154–158. doi:10.1109/LSP.2015.2507200.
  • Sankararao P, Sahu G, Parida P. 2020. A contemporary survey on human gait recognition. Journal of Information Assurance & Security. 15(3): 94–106. https://www.researchgate.net/publication/341766518_A_contemporary_Survey_on_Human_Gait_Recognition.
  • Sayadi MK, Ramezanian R, Ghaffari-Nasab N. 2010. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. International Journal of Industrial Engineering Computations. 1(1): 1–10. doi:10.5267/j.ijiec.2010.01.001.
  • Senthilnath J, Omkar SN, Mani V. 2011. Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation. 1(3): 164–171. doi:10.1016/j.swevo.2011.06.003.
  • Singh JP, Jain S, Arora S, Singh UP. 2018. Vision-Based gait recognition: a survey IEEE Access. 6: 70497–70527. doi:10.1109/ACCESS.2018.2879896.
  • Singh T, Vishwakarma DK. 2020. A deeply coupled ConvNet for human activity recognition using dynamic and RGB images. Neural Comput Appl. 33: 469–485. doi:10.1007/s00521-020-05018-y.
  • Song C, Yongzhen H, Yan H, Jia N, Wang L. 2019. GaitNet: an end-to-end network for gait-based human identification. Pattern Recognit. 96: 1–10. doi:10.1016/j.patcog.2019.106988.
  • Tafazzoli F, Bebis G, Louis S, Hussain M. 2015. Genetic feature selection for gait recognition. J Electron Imaging. 24(1): 1–24. doi:10.1117/1.JEI.24.1.013036.
  • Vishwakarma DK, Dhiman C. 2019. A unified model for human activity recognition using spatial distribution of gradients and difference of gaussian kernel. Vis Comput. 35: 1595–1613. doi:10.1007/s00371-018-1560-4.
  • Vishwakarma DK, Kapoor R, Maheshwari R, Kapoor V, Raman S. 2015. Recognition of abnormal human activity using the changes in orientation of silhouette in key frames. 2nd IEEE International Conference on Computing for Sustainable Global Development, New Delhi, India; p. 11–13. Retrieved from: https://ieeexplore.ieee.org/abstract/document/7100269?section=abstract
  • Vishwakarma DK, Singh K. 2016. Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Transactions on Cognitive and Developmental Systems. 9, p. 316–327. doi:10.1109/TCDS.2016.2577044.
  • Wu Z, Huang Y, Wang L, Wang X, Tan T. 2016. A comprehensive study on cross-view gait-based human identification with deep CNNs. nature-inspired optimization techniques for image processing applications. IEEE Trans Pattern Analysis and Machine Intelligence. 39, p. 209–226 doi:10.1109/TPAMI.2016.2545669.
  • Xu H, Yu S, Chen J, Zuo X. 2018. An improved firefly algorithm for feature selection in classification. Wireless Personal Communications. 102(4): 2823–2834. doi:10.1007/s11277-018-5309-1.
  • Yang XS. 2014. Nature-inspired optimization algorithms. Elsevier Inc. Retrieved from https://www.elsevier.com/books/nature-inspired-optimization-algorithms/yang/978-0-12-416743-8
  • Yang XS, He X. 2013. Firefly algorithm: recent advances and applications. Int J Swarm Intelligence. 1(1): 36–50. doi:10.1504/IJSI.2013.055801.
  • Yu S, Daoliang T, Tieniu T. 2006. A framework for evaluating the effect of view angle, clothing, and carrying condition on gait recognition. 18th International Conference on Pattern Recognition, Hong Kong, China; Vol. 4, p. 441–444. doi:10.1109/ICPR.2006.67.
  • Yusof MSM, Toha SF. 2019. Gait identification and optimization for amphi-underwater robot by using ant colony algorithm. International Journal of Recent Technology and Engineering. 7(6S): 277–283. Retrieved from https:// studentrepo. iium.edu.my/handle/123456789/4834.
  • Zaman MA, Matin MA. 2012. Nonuniformly spaced linear antenna array design using firefly algorithm. Int J Microwave Science and Technology. 2012: 1–8. doi:10.1155/2012/256759.
  • Zhang WH, Zhang M, Fan W. 2018. Multi-view gait recognition method based on dynamic and static feature fusion. Proc eedings of International Conference on Sensor Networks and Signal Processing, Xi'an, China; Vol. 1, p. 287–291. doi:10.1109/SNSP.2018.00062.
  • Zhang Z, Tran L, Liu F, Liu X. 2019. On learning disentangled representations for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1–15. doi:10.1109/TPAMI.2020.2998790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.