102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An improved MI recognition by localising feature extraction in both frequency and time domains

&
Pages 1818-1830 | Received 16 Nov 2022, Accepted 14 Mar 2023, Published online: 23 Mar 2023

References

  • Abdulkader SN, Ayman A, Mostafa-Sami MM. 2015. Brain computer interfacing: applications and challenges. Egypt Inf J. 16(2):213–230. doi:10.1016/j.eij.2015.06.002.
  • Ai Q, Liu Q, Meng W, Xie SQ. 2018. Advanced rehabilitative technology: neural interfaces and devices. Cambridge, Massachusetts, United States: Academic Press. ISBN:978-0-12-814597-5. https://doi.org/10.1016/C2017-0-01714-7
  • Alomari MH, Awada EA, Samaha A, Alkamha K. 2014. Wavelet based feature extraction for the analysis of EEG signals associated with imagined fists and feet movements. CIS. 7(2):17–27. doi:10.5539/cis.v7n2p17.
  • Ang KK, Chin ZY, Guan C, Zhang G 2008. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence), Hong Kong, China. IEEE. p. 2390–2397. doi:10.1109/IJCNN.2008.4634130.
  • Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G. 2007. The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage. 37(2):539–550. doi:10.1016/j.neuroimage.2007.01.051.
  • Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G. 2008. BCI Competition 2008–graz data set a. Austria: Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology: 16,2008. p. 1–6.
  • Chaudhari R, Galiyawala HJ. 2017. A review on motor imagery signal classification for BCI. Signal Process. 2017(11):16–34.
  • Comon P. 1994. Independent component analysis, a new concept? Signal Process. 36(3):287–314. doi:10.1016/0165-1684(94)90029-9.
  • Grosse-Wentrup M, Buss M. 2008. Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng. 55(8):1991–2000. doi:10.1109/TBME.2008.921154.
  • Hamedi M, Salleh SH, Noor AM, Mohammad-Rezazadeh I 2014. Neural network-based three-class motor imagery classification using time-domain features for BCI applications. In 2014 IEEE region 10 symposium, Kuala Lumpur, Malaysia. IEEE. p. 204–207.
  • Hsu WY, Sun YN. 2009. EEG-based motor imagery analysis using weighted wavelet transform features. J Neurosci Methods. 176(2):310–318. doi:10.1016/j.jneumeth.2008.09.014.
  • Hu J, Xiao D, Mu Z. 2009. Application of energy entropy in motor imagery EEG classification. International Journal of Digital Content Technology and Its Applications. 3(2):83–90. doi:10.4156/jdcta.vol3.issue2.hu.
  • Jiang J, Wang C, Wu J, Qin W, Xu M, Yin E. 2020. Temporal combination pattern optimization based on feature selection method for motor imagery BCIs. Front Hum Neurosci. 14:231. doi:10.3389/fnhum.2020.00231.
  • Jin J, Miao Y, Daly I, Zuo C, Hu D, Cichocki A. 2019. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Networks. 118:262–270. doi:10.1016/j.neunet.2019.07.008.
  • Jin J, Xiao R, Daly I, Miao Y, Wang X, Cichocki A. 2021. Internal feature selection method of CSP based on L1-norm and Dempster– Shafer theory. IEEE Trans Neural Netw Learn Syst. 32(11): 4814–482. doi:10.1109/TNNLS.2020.3015505.
  • Jolliffe I. 2011. Principal component analysis. In: Lovric M, editor. International encyclopedia of statistical science. Berlin: Springer. p. 1094–1096.
  • Kirar JS, Agrawal RK. 2018. Relevant feature selection from a combination of spectral-temporal and spatial features for classification of motor imagery EEG. J Med Syst. 42(5):78. doi:10.1007/s10916-018-0931-8.
  • Kumar JS, Bhuvaneswari P. 2012. Analysis of Electroencephalography (EEG) signals and its categorization–a study. Procedia Engineering. 38:2525–2536. doi:10.1016/j.proeng.2012.06.298.
  • Kumar S, Sharma A, Tsunoda T 2019. Subject-specific-frequency-band for motor imagery EEG signal recognition based on common spatial spectral pattern. In Pacific Rim International Conference on Artificial Intelligence (pp. 712–722). Springer, Cham.
  • Li M, Luo X, Yang J, Sun Y. 2016. Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG. Journal of Sensors. 2016:1–9. doi:10.1155/2016/7481946.
  • Liu A, Chen K, Liu Q, Ai Q, Xie Y, Chen A. 2017. Feature selection for motor imagery EEG classification based on firefly algorithm and learning automata. Sensors. 17(11):2576. doi:10.3390/s17112576.
  • Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. 2018. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 15(3):031005. doi:10.1088/1741-2552/aab2f2.
  • Lotte F, Congedo M, Lécuyer A, Arnaldi B, Arnaldi B. 2007. A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng. 4(2):R1. doi:10.1088/1741-2560/4/2/R01.
  • McFarland DJ, Wolpaw JR. 2011. Brain-computer interfaces for communication and control. Commun ACM. 54(5):60–66. doi:10.1145/1941487.1941506.
  • Nicolas-Alonso LF, Gomez-Gil J. 2012. Brain computer interfaces, a review. Sensors. 12(2):1211–1279. doi:10.3390/s120201211.
  • Oikonomou VP, Georgiadis K, Liaros G, Nikolopoulos S, Kompatsiaris I 2017. A comparison study on EEG signal processing techniques using motor imagery EEG data. In 2017 IEEE 30th international symposium on computer-based medical systems (CBMS), Thermi-Thessaloniki, Greece. IEEE. p. 781–786.
  • Padfield N, Zabalza J, Zhao H, Masero V, Ren J. 2019. EEG-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors. 19(6):1423. doi:10.3390/s19061423.
  • Pei Y, Luo Z, Yan Y, Yan H, Jiang J, Li W, Xie L, Yin E. 2021. Data augmentation: using channel-level recombination to improve classification performance for motor imagery EEG. Front Hum Neurosci. 15:645952. doi:10.3389/fnhum.2021.645952.
  • Pfurtscheller G. 1977. Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr Clin Neurophysiol. 43(5):757–760. doi:10.1016/0013-4694(77)90092-X.
  • Pineda JA. 2005. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Rev. 50(1):57–68. doi:10.1016/j.brainresrev.2005.04.005.
  • Rahman MKM, Haque T. 2021. Classification of motor imagery using a time-localised approach. Journal of Medical Engineering & Technology. 45(5):361–374. doi:10.1080/03091902.2021.1906966.
  • Rahman MKM, Joadder MAM. 2017. A review on the components of EEG-based motor imagery classification with quantitative comparison. Appl Theory Comput Technol. 2(2):1–15. doi:10.22496/atct20170122133.
  • Rahman MKM, Joadder MAM. 2020. A space-frequency localized approach of spatial filtering for motor imagery classification. Health Information Science and Systems. 8(1):1–8. doi:10.1007/s13755-020-00106-8.
  • Sanei S, Chambers JA. 2013. EEG signal processing. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons.
  • Scherer R, Vidaurre C. 2018. Motor imagery based brain–computer interfaces. In Pablo D, editors. Smart wheelchairs and brain-computer interfaces. Cambridge, Massachusetts, United States: Academic Press. p. 171–195.
  • Shahtalebi S, Mohammadi A 2018. A Bayesian framework to optimize double band spectra spatial filters for motor imagery classification. In 2018 ieee international conference on acoustics, speech and signal processing (icassp), Calgary, AB, Canada. IEEE. p. 871–875.
  • Teplan M. 2002. Fundamentals of EEG measurement. Measurement Science Review. 2(2):1–11.
  • Wierzgała P, Zapała D, Wojcik GM, Masiak J. 2018. Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis. Front Neuroinform. 12:78. doi:10.3389/fninf.2018.00078.
  • Zhang H, Guan C, Ang KK, Wang C, Chin ZY. 2012. BCI competition IV–data set I: learning discriminative patterns for self-paced EEG-based motor imagery detection. Front Neurosci. 6:7. doi:10.3389/fnins.2012.00007.
  • Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y. 2019. A survey on deep learning based brain computer interface: recent advances and new frontiers. Journal of neural engineering. 18(3): 031002. doi:10.1088/1741-2552/abc902.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.