126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Segmentation of cervical nuclei using convolutional neural network for conventional cytology

, , , , , , , & show all
Pages 1876-1888 | Received 17 Oct 2022, Accepted 20 Mar 2023, Published online: 05 Apr 2023

References

  • Araújo FH, Silva RR, Ushizima DM, Rezende MT, Carneiro CM, Bianchi AGC, Medeiros FN. 2019. Deep learning for cell image segmentation and ranking. Comput Med Imaging Graph. 72:13–21. doi:10.1016/j.compmedimag.2019.01.003.
  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2017. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell. 40(4):834–848. doi:10.1109/TPAMI.2017.2699184.
  • Chisale Mabotja M, Levin J, Kawonga M, Grce M. 2021. Beliefs and perceptions regarding cervical cancer and screening associated with pap smear uptake in johannesburg: a cross-sectional study. Plos One. 16(2):e0246574. doi:10.1371/journal.pone.0246574.
  • Diniz DN, Vitor RF, Bianchi AG, Delabrida S, Carneiro CM, Ushizima DM, de Medeiros FN, Souza MJ. 2021. An ensemble method for nuclei detection of overlapping cervical cells. Expert Syst Appl. 185:115642. doi:10.1016/j.eswa.2021.115642.
  • Gautam S, Bhavsar A, Sao AK, H KK. 2018. CNN based segmentation of nuclei in PAP-smear images with selective pre-processing. In: Tomaszewski J Gurcan MeditorsMedical imaging 2018: digital Pathology Vol. 10581 February 10-15 Houston, USAInternational Society for Optics and Photonics; SPIE p. 105810X
  • Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge, MA: MIT press .
  • He K, Gkioxari G, Doll´ar P, Girshick RB 2018. Mask R-CNN; [arXiv:1703.06870v3 [cs.CV]]; January. Available from: https://arxiv.org/pdf/1703.06870.
  • Hoque IT, Ibtehaz N, Chakravarty S, Rahman MS, Rahman MS. 2021. A contour property based approach to segment nuclei in cervical cytology images. BMC Med Imaging. 21(1):1–12. doi:10.1186/s12880-020-00533-9.
  • Huang J, Wang T, Zheng D, He Y. 2020. Nucleus segmentation of cervical cytology images based on multi-scale fuzzy clustering algorithm. Bioengineered. 11(1):484–501. doi:10.1080/21655979.2020.1747834.
  • Huang Y, Zhu H. 2020. Segmentation of overlapped cervical cells using asymmetric mixture model and shape constraint level set method. Math Probl Eng. 2020:3728572. doi:10.1155/2020/3728572.
  • Hussain E, Mahanta LB, Das CR, Choudhury M, Chowdhury M 2020. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in pap smear images. Artificial Intelligence in Medicine:101897.
  • Iglovikov V, Shvets A 2018. Ternausnet: u-net with VGG11 encoder pre-trained on imagenet for image segmentation; [arXiv:1801.05746v1 [cs.CV]]; January. Available from: https://arxiv.org/pdf/1801.05746.
  • Jantzen J, Norup J, Dounias G, Bjerregaard B 2005. Pap-smear benchmark data for pattern classification. In: Proceedings of the Nature-Inspired Smart Information Systems Symposium (NiSIS 2005); October 4-5; Albufeira, Portugal. NiSIS. p. 1–9. Available from: https://bityli.com/PGlEIbci.
  • Jiang H, Zhou Y, Lin Y, Chan RC, Liu J, Chen H 2022. Deep learning for computational cytology: a survey; [arXiv:2202.05126v2 [eess.IV]]; February. Available from: https://arxiv.org/pdf/2202.05126.
  • Kendall A, Badrinarayanan V, Cipolla R. 2015. Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding; [ arXiv:1511.02680v2 [cs.CV]]. October. arXiv:1511.02680v2 [cs.CV]: https://arxiv.org/pdf/1511.02680.
  • Kůrková V, Manolopoulos Y, Hammer B, Iliadis, L, Maglogiannis, I. 2020. A Survey on Deep Transfer Learning. Artificial Neural Networks and Machine Learning – ICANN 2018. Lecture Notes in Computer Science. Cham: IEEE. p. 1274–1278. https://link.springer.com/chapter/10.1007/978-3-030-01424-7_27
  • Kurnianingsih, Allehaibi KHS, Nugroho LE, Widyawan, Lazuardi L, Prabuwono AS, Mantoro T. 2019. Segmentation and classification of cervical cells using deep learning. IEEE Access. 7:116925–116941. doi:10.1109/ACCESS.2019.2936017.
  • LC Chen, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari V, Hebert M, Sminchisescu C, and Weiss Y., editors, Computer Vision – ECCV 2018. (Vol. 11211, pp. 833–851). Lecture Notes in Computer Science, Cham: Springer. https://link.springer.com/chapter/10.1007/978-3-030-01234-2_49
  • Liang LA, Einzmann T, Franzen A, Schwarzer K, Schauberger G, Schriefer D, Radde K, Zeissig SR, Ikenberg H, Meijer CJ, et al. 2021. Cervical cancer screening: comparison of conventional pap smear test, liquid-based cytology, and human papillomavirus testing as stand-alone or cotesting strategies. Cancer Epidemiol Prev Biomarkers. 30(3):474–484. doi:10.1158/1055-9965.EPI-20-1003.
  • Liu Y, Zhang P, Song Q, Li A, Zhang P, Gui Z. 2018. Automatic segmentation of cervical nuclei based on deep learning and a conditional random field. IEEE Access. 6:53709–53721. doi:10.1109/ACCESS.2018.2871153.
  • Lu Z, Carneiro G, Bradley AP. 2015. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Trans Image Process. 24(4):1261–1272. doi:10.1109/TIP.2015.2389619.
  • Lu Z, Carneiro G, Bradley AP, Ushizima D, Nosrati MS, Bianchi AG, Carneiro CM, Hamarneh G. 2016. Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE J Biomed Health Inf. 21(2):441–450. doi:10.1109/JBHI.2016.2519686.
  • Matias AV, Amorim JGA, Macarini LAB, Cerentini A, Onofre ASC, Onofre FBM, Daltoé FP, Stemmer MR, von Wangenheim A. 2021. What is the state of the art of computer vision-assisted cytology? A systematic literature review. Comput Med Imaging Graph . 91:101934. https://www.sciencedirect.com/science/article/pii/S0895611121000835
  • Nayar R, Wilbur DC. 2017. The bethesda system for reporting cervical cytology: a historical perspective. Acta Cytol. 61(4–5):359–372. doi:10.1159/000477556.
  • Oquab M, Bottou L, Laptev I, Sivic J 2014. Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 23-28 June 2014, Columbus, OH, USA. p. 1717–1724. doi:10.1109/CVPR.2014.222.
  • Pangarkar MA. 2022. The bethesda system for reporting cervical cytology. Cytojournal. 19:28. doi:10.25259/CMAS_03_07_2021.
  • Phoulady HA, Goldgof D, Hall LO, Mouton PR. 2017. A framework for nucleus and overlapping cytoplasm segmentation in cervical cytology extended depth of field and volume images. Comput Med Imaging Graph. 59:38–49. doi:10.1016/j.compmedimag.2017.06.007.
  • Rezende MT, Silva R, FdO B, Tobias AH, Oliveira PH, Machado TM, Costa CS, Medeiros FN, Ushizima DM, Carneiro CM, et al. 2021. Cric searchable image database as a public platform for conventional pap smear cytology data. Sci Data. 8(1):1–8. doi:10.1038/s41597-021-00933-8.
  • Ronneberger O, Fischer P, Brox T. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, and Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Vol. 9351. Lecture Notes in Computer Science, Cham: Springer. pp. 234–241. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
  • Saha R, Bajger M, Lee G. 2017. Circular shape constrained fuzzy clustering (ciscfc) for nucleus segmentation in pap smear images. Comput Biol Med. 85:13–23. doi:10.1016/j.compbiomed.2017.04.008.
  • Simonyan K, Zisserman A 2015. Very deep convolutional networks for large-scale image recognition; [arXiv:1409.1556v6 [cs.CV]]; April. Available from: https://arxiv.org/pdf/1409.1556.
  • Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. 2018. A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., editors. International conference on artificial neural networks. Cham: Springer; pp. 270–279. https://link.springer.com/chapter/10.1007/978-3-030-01424-7_27
  • Ushizima DM, Bianchi AG, Carneiro CM 2014. Segmentation of subcellular compartments combining superpixel representation with Voronoi diagrams. Lawrence Berkeley National Laboratory, Berkeley. Lawrence Berkeley National Laboratory.
  • Wang T, Huang J, Zheng D, He Y. 2020. Nucleus segmentation of cervical cytology images based on depth information. IEEE Access. 8:75846–75859. doi:10.1109/ACCESS.2020.2989369.
  • Wan T, Xu S, Sang C, Jin Y, Qin Z. 2019. Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks. Neurocomputing. 365:157–170. doi:10.1016/j.neucom.2019.06.086.
  • WHO. 2022. World health organization - cervical cancer. Accessed = 2022-10-9; Available from: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer.
  • Win KP, Kitjaidure Y, Hamamoto K, Myo Aung T. 2020. Computer-assisted screening for cervical cancer using digital image processing of pap smear images. Appl Sci. 10(5):1800. doi:10.3390/app10051800.
  • Xie S, Girshick RB, Doll´ar P, Tu Z, He K 2017. Aggregated residual transformations for deep neural networks; [arXiv:1611.05431v2 [cs.CV]]; April. Available from: https://arxiv.org/pdf/1611.05431.
  • Yang X, Wu J, Yin Y 2020. Interacting convolution with pyramid structure network for automated segmentation of cervical nuclei in pap smear images. In: Proceedings of the IEEE 17th International Symposium on Biomedical Imaging (ISBI 2020), 03-07 April 2020 Iowa City, IA, USA; April 3-7. IEEE. p. 499–502 https://ieeexplore.ieee.org/document/9098383 doi:10.1109/ISBI45749.2020.9098383.
  • You K, Long M, Wang J, Jordan MI 2019. How does learning rate decay help modern neural networks?; [ arXiv:1908.01878v2 [cs.LG]]. September. Available from: https://arxiv.org/pdf/1908.01878.
  • Zhang J, Liu Z, Du B, He J, Li G, Chen D. 2019. Binary tree-like network with two-path fusion attention feature for cervical cell nucleus segmentation. Comput Biol Med. 108:223–233. doi:10.1016/j.compbiomed.2019.03.011.
  • Zhou Y, Chen H, Xu J, Dou Q, Heng PA 2019 IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation . . In: Shen D, Liu T, Peters T, Staib L, Essert C, Zhou S, Yap P, and Khan A Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 , editors ; vol. 11764 Lecture Notes in Computer Science). : Cham: Springer; p. 640–648 https://link.springer.com/chapter/10.1007/978-3-030-32239-7_71 doi:10.1007/978-3-030-32239-7_71.
  • Zhu X, Li X, Ong K, Zhang W, Li W, Li L, Young D, Su Y, Shang B, Peng L, et al. 2021. Hybrid ai-assistive diagnostic model permits rapid tbs classification of cervical liquid-based thin-layer cell smears. Nat Commun. 12(1):1–12. doi:10.1038/s41467-021-23913-3.
  • Zou J, Xue Z, Brown G, Long R, Antani S. 2020. Deep learning for nuclei segmentation and cell classification in cervical liquid based cytology. In: Chen P, and Deserno TeditorsMedical Imaging 2020: imaging Informatics for Healthcare, Research, and Applications Vol. 11318 SPIE Medical Imaging Houston, USASPIE Digital Library p. 1131811 doi:10.1117/12.2549547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.