53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The application of deep learning methods in knee joint sports injury diseases

, , , , , , , ORCID Icon & show all
Pages 2689-2696 | Received 15 Mar 2023, Accepted 16 Sep 2023, Published online: 23 Sep 2023

References

  • Ambellan F, Tack A, Ehlke M, Zachow S. 2019. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Med Image Anal. 52:109–118. eng. doi: 10.1016/j.media.2018.11.009.
  • Astuto B, Flament I, K Namiri N, Shah R, Bharadwaj U, M Link T, D Bucknor M, Pedoia V, Majumdar S. 2021. Automatic deep learning-assisted detection and grading of abnormalities in knee MRI studies. Radiolo Art Int. 3(3):e200165. eng. doi: 10.1148/ryai.2021200165.
  • Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, et al. 2018. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 15(11):e1002699. eng. doi: 10.1371/journal.pmed.1002699.
  • Bollier M, Smith PA. 2014. Anterior cruciate ligament and medial collateral ligament injuries. J Knee Surg. 27(5):359–368. eng. doi: 10.1055/s-0034-1381961.
  • Brandser EA, Riley MA, Berbaum KS, el-Khoury GY, Bennett DL. 1996. MR imaging of anterior cruciate ligament injury: independent value of primary and secondary signs. AJR Am J Roentgenol. 167(1):121–126. eng. doi: 10.2214/ajr.167.1.8659355.
  • Chang PD, Wong TT, Rasiej MJ. 2019. Deep learning for detection of complete anterior cruciate ligament tear. J Digit Imaging. 32(6):980–986. eng. doi: 10.1007/s10278-019-00193-4.
  • Chiu SS. 2006. The anterior tibial translocation sign. Radiology. 239(3): 914–915. eng.
  • Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ. 2018. Current applications and future impact of machine learning in radiology. Radiology. 288(2):318–328. eng. doi: 10.1148/radiol.2018171820.
  • Deep Residual Learning for Image Recognition. 2016. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  • Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. 2006. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 14(3):204–213. eng. doi: 10.1007/s00167-005-0679-9.
  • Fang T, Chen P, Zhang J, Wang B. 2020. Crop leaf disease grade identification based on an improved convolutional neural network. J Electron Imaging. 29(1):1–. doi: 10.1117/1.JEI.29.1.013004.
  • Fritz B, Fritz J. 2022. Artificial intelligence for MRI diagnosis of joints: a scoping review of the current state-of-the-art of deep learning-based approaches. Skeletal Radiol. 51(2):315–329. eng. doi: 10.1007/s00256-021-03830-8.
  • Gianotti SM, Marshall SW, Hume PA, Bunt L. 2009. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport. 12(6):622–627. eng. doi: 10.1016/j.jsams.2008.07.005.
  • Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017. IEEE International conference on computer cision
  • Irmakci I, Anwar SM, Torigian DA, Bagci U. 2020. Deep learning for musculoskeletal image analysis. arXiv. doi: 10.48550/arXiv.2003.00541.
  • Jeon Y, Yoshino K, Hagiwara S, Watanabe A, Quek ST, Yoshioka H, Feng M. 2021. Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis. IEEE J Biomed Health Inform. 25(7):2388–2397. eng. doi: 10.1109/JBHI.2021.3081355.
  • Kamble RM, Chan G, Charry O, Kokare MB, Meriaudeau F 2018. Automated Diabetic Macular Edema (DME) analysis using fine tuning with inception-Resnet-v2 on OCT images. In Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.
  • Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics. 33(1):159–174. eng. doi: 10.2307/2529310.
  • Lao Y, Jia B, Yan P, Pan M, Hui X, Li J, Luo W, Li X, Han J, Yan P, et al. 2019. Diagnostic accuracy of machine-learning-assisted detection for anterior cruciate ligament injury based on magnetic resonance imaging: protocol for a systematic review and meta-analysis. Medicine. 98(50):e18324. eng. doi: 10.1097/MD.0000000000018324.
  • Li F, Chen H, Liu Z, Zhang X, Wu Z. 2019. Fully automated detection of retinal disorders by image-based deep learning. Graefe’s Arch Clin Exp Ophthalmol. 257(3):495–505. eng. doi: 10.1007/s00417-018-04224-8.
  • Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. 2018. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 79(4):2379–2391. eng. doi: 10.1002/mrm.26841.
  • Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, Lian K, Kambhampati S, Kijowski R. 2018. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 289(1):160–169. eng. doi: 10.1148/radiol.2018172986.
  • Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S. 2020. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Radiolo Art Int. 2(4):e190207. eng. doi: 10.1148/ryai.2020190207.
  • Negahi Shirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. 2015. Anterior cruciate ligament: structure, injuries and regenerative treatments. Adv Exp Med Biol. 881:161–186. eng.
  • Ou X, Yan P, Zhang Y, Tu B, Li W. 2019. Moving object detection method via ResNet-18 with encoder–decoder structure in complex scenes. IEEE Acces. 7(99):108152–108160. doi: 10.1109/ACCESS.2019.2931922.
  • Pedoia V, Norman B, Mehany SN, Bucknor MD, Link TM, Majumdar S. 2019. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. J Magn Reson Imaging. 49(2):400–410. eng. doi: 10.1002/jmri.26246.
  • Robertson PL, Schweitzer ME, Bartolozzi AR, Ugoni A. 1994. Anterior cruciate ligament tears: evaluation of multiple signs with MR imaging. Radiology. 193(3):829–834. eng. doi: 10.1148/radiology.193.3.7972833.
  • Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ. 2016. Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 44(6):1502–1507. eng. doi: 10.1177/0363546516629944.
  • Štajduhar I, Mamula M, Miletić D, Ünal G. 2017. Semi-automated detection of anterior cruciate ligament injury from MRI. Computer Methods And Programs In Biomedicine. 140:151–164. eng. doi: 10.1016/j.cmpb.2016.12.006.
  • Tamimi I, Ballesteros J, Lara AP, Tat J, Alaqueel M, Schupbach J, Marwan Y, Urdiales C, Gomez-de-Gabriel JM, Burman M, et al. 2021. A prediction model for primary anterior cruciate ligament injury using artificial intelligence. Orthop J Sports Med. 9(9):23259671211027543. eng. doi: 10.1177/23259671211027543.
  • Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. 2018. Deep learning in neuroradiology. AJNR Am J Neuroradiol. 39(10):1776–1784. eng. doi: 10.3174/ajnr.A5543.
  • Zhang L, Li M, Zhou Y, Lu G, Zhou Q. 2020. Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. J Magn Reson Imaging. 52(6):1745–1752. eng. doi: 10.1002/jmri.27266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.