373
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of deep neural network for multiclassification of Pneumonia

ORCID Icon
Article: 2292072 | Received 17 Oct 2023, Accepted 01 Dec 2023, Published online: 12 Dec 2023

References

  • Bau D, Zhou B, Khosla A, Oliva A, & Torralba A (2017). Network dissection: quantifying interpretability of deep visual representations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3319–11). Honolulu, HI, USA.
  • Bhutta ZA. 2006. Childhood pneumonia in developing countries. BMJ. 333(7569):612–613. doi: 10.1136/bmj.38975.602836.be.
  • Bishop S, M C. 2006. Pattern Recognition and machine learning. New York, NY: Springer.
  • Conti V, Militello C, Rundo L, Vitabile S. 2021. A novel bio-inspired approach for high-performance management in service-oriented networks. IEEE Trans Emerg Topics Comput. 9(4):1709–1722. doi: 10.1109/TETC.2020.3018312.
  • de Jong LS. 1977. Towards a formal definition of numerical stability. Numer Math. 28(2):211–220. doi: 10.1007/BF01394453.
  • Deng J, Dong W, Socher R, Li L, Li K, & Fei-Fei L (2009). Imagenet: A large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition; Miami, FL, USA. p. 248–255.
  • Dilshad S, Singh N, Atif M, Hanif A, Yaqub N, Farooq WA, Ahmad H, Chu YM, Masood MT. 2021. Automated image classification of chest X-rays of COVID-19 using deep transfer learning. Results In Physics. 28:104529. doi: 10.1016/j.rinp.2021.104529.
  • Dutta A, Jinsart W. 2020. Risks to health from ambient particulate matter (PM2.5) to the residents of Guwahati city, India: an analysis of prediction model. Hum Ecol Risk Assess. 27(4):1094–1111. doi: 10.1080/10807039.2020.1807902.
  • Dutta A, Jinsart W, Xu Y. 2022. Air pollution in Delhi, India: It’s status and association with respiratory diseases. PLoS ONE. 17(9):e0274444. doi: 10.1371/journal.pone.0274444.
  • Fort S, Scherlis A. 2018. The goldilocks zone: towards better understanding of neural network loss landscapes arXiv (Cornell University) 33(1):3574–358110.48550/arxiv.1807.02581
  • He K, Zhang X, Ren S, & Sun J (2016). Deep residual learning for image Recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA.
  • Hridoy RH, Akter F, Mahfuzullah M, & Ferdowsy F (2021). A Computer Vision-based food recognition approach for controlling. Proceedings of the 2021 International Conference on Information Technology (ICIT); Amman, Jordan.
  • Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv. arXiv:1602.07360.
  • Kermany D, Zhang K, Goldbaum M. 2018. Labeled optical coherence tomography (OCT) and chest X-Ray images for classification. Mendeley Data. V2. doi: 10.17632/rscbjbr9sj.2.
  • Kingma D, Ba J. 2014. Adam: a method for stochastic optimization Proceedings of the 3rd International Conference for Learning Representations; San Diego. p. 1412.6980.
  • Kloberdanz E, Kloberdanz KG, & Le W (2022). DeepStability. Proceedings of the 44th International Conference on Software Engineering. 10.1145/3510003.3510095
  • Kundu R, Das R, Geem ZW, Han G-T, Sarkar R. 2021. Pneumonia detection in chest xray images using an ensemble of deep learning models. PLoS ONE. 16(9):e0256630. doi: 10.1371/journal.pone.0256630.
  • Lal S, Rehman S, Shah J, Meraj T, Rauf H, Damasˇevičius R, Mohammad M A, Abdhul Kareem KH. 2021. Adversarial attack and defence through adversarial training and feature fusion for diabetic retinopathy Recognition. Sensors. 21(11):3922. PMID: 34200216. doi: 10.3390/s21113922.
  • Liang L, Cai Y, Barratt B, Lyu B, Chan Q, Hansell A, Xie W, Zhang D, Kelly FJ, Tong Z. 2019. Associations between daily air quality and hospitalisations for acute exacerbation of chronic obstructive pulmonary disease in Beijing, 2013–17: an ecological analysis. Lancet Planet Health. 3(6):e270–e279. doi: 10.1016/s2542-5196(19)30085-3.
  • Lu X, Zhang S, Xing J, Wang Y, Chen W, Ding D, Wang Y, Duan L, Hao J. 2020. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering. 6(12):1423–1431. doi: 10.1016/j.eng.2020.03.014.
  • Mizgerd JP Lung infection–a public health priority. PLoS Med 3: e76, 2006. 10.1371/journalpmed0030076
  • Mizgerd JP. 2012. Respiratory infection and the impact of pulmonary immunity on lung health and disease. Am J Respir Crit Care Med. 186(9):824–829. doi: 10.1164/rccm.201206-1063PP.
  • Murray CJ, Lopez AD. 1996. Evidence-based health policy–lessons from the global burden of disease study. Sci. 274(5288):740–743. doi: 10.1126/science.274.5288.740.
  • Natekar P, Kori A, Krishnamurthi G. 2020. Demystifying brain tumor segmentation networks: interpretability and uncertainty analysis. Front Comput Neurosci. 14. doi: 10.3389/fncom.2020.00006.
  • Neuman M, Lee E, Bixby S, Diperna S, Hellinger JMarkowitz R, Sabah S, Michael MC, Samir SS. 2012. Variability in the interpretation of chest radiographs for the diagnosis of pneumonia in children. J Hosp Med. 7(4):294–298. PMID: 22009855. doi: 10.1002/jhm.955.
  • Rauf HT, Lali MIU, Khan MA, Kadry S, Alolaiyan H, Razaq A, Irfan R. 2021. Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks. Personal And Ubiquitous Computing. 27(3):733–750. doi: 10.1007/s00779-020-01494-0.
  • Salahuddin Z, Woodruff HC, Chatterjee A, Lambin P. 2022. Transparency of deep neural networks for medical image analysis: a review of interpretability methods. Comput Biol Med. 140:105111. doi: 10.1016/j.compbiomed.2021.105111.
  • Shah U, Abd-Alrazeq A, Alam T, Househ M, Shah Z. 2020. An efficient method to predict pneumonia from chest X-Rays using deep learning approach. PubMed. 272:457–460.
  • Tan M, Le Q. 2019. EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning; California. arXiv:1905.11946.
  • Walker CLF, Rudan I, Liu L, Nair H, Τheodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE. 2013. Global burden of childhood pneumonia and diarrhoea. Lancet. 381(9875):1405–1416. doi: 10.1016/s0140-6736(13)60222-6.
  • Wang S, Khan MA, Zhu Z, Zhang Y. 2023. WACPN: a neural network for pneumonia diagnosis. Comput Syst Sci Eng. 45(1):21–34. doi: 10.32604/csse.2023.031330.
  • WHO Pneumonia. World Health Organization. (2019), https://www.who.int/news-room/fact-sheets/detail/pneumonia
  • Williams G, Macaskill P, Kerr M, Fitzgerald D, Isaacs D, Codarini M, McCaskill M,Prelog, K,Craig JC. 2013. Variability and accuracy in interpretation of consolidation on chest radiography for diagnosing pneumonia in children under 5 years of age. Pediatr Pulmonol. PMID: 23997040. 48:1195–1200. doi:10.1002/ppul.22806.
  • Zhang X, Lu S, Wang SH. 2022. Diagnosis of COVID-19 pneumonia via a novel deep learning architecture. J Comput Sci Technol. 37(2):330–343. doi:10.1007/s11390-020-0679-8.