113
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Conformal printed MIMO antenna with DGS for millimetre wave communication applications

, , , & ORCID Icon
Pages 329-343 | Received 08 Dec 2018, Accepted 24 Mar 2019, Published online: 11 Apr 2019

References

  • Alhalabi, R., & Rebeiz, G. (2008, October). High-efficiency angled-dipole antennas for millimeter-wave phased array applications. IEEE Transactions on Antennas and Propagation, 56(10), 3136–3142.
  • Blanch, S., Romeu, J., & Corbella, I. (2003). Exact representation of antenna system diversity performance from input parameter description. Electronic Letters, 39(9), 705–707.
  • Boccardi, F., et al. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52, 74–80.
  • Choi, J., Va, V., Gonz´alez-Prelcic, N., Daniels, R., Bhat, C. R., & Heath, R. W., Jr. (2016, December). Millimeter wave vehicular communication to support massive automotive sensing. IEEE Communications Magazine, 54(12), 160–167.
  • Dong, P., Zheng, T., Yu, S., Zhang, H., & Yan, X. (2017). Enhancing vehicular communication using 5G-enabled smart collaborative networking. IEEE Wireless Communications, 24(6), 72–79.
  • Author. (2018).
  • Jiang, T., Jiao, T., Li, Y., & Yu, W. (2018). A low mutual coupling MIMO antenna using periodic multi-layered electromagnetic band gap structures. Applied Computational Electromagnetics Society Journal, 33(3), 305–311.
  • Jilani, S. F., & Alomainy, A. (2018). Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. Microwaves, Antennas & Propagation, 12(5), 672–677.
  • Jilani, S. F., & Alomainy, A. (2017, September). A multiband millimeter-wave two-dimensional array based on enhanced franklin antenna for 5G wireless systems. IEEE Antennas and Wireless Propagation Letters, 16, 2983–2986.
  • Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014, February). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.
  • Li, Y., Li, W., & Yu, W. (2013). A multi-band/UWB MIMO/diversity antenna with an enhance isolation using radial stub loaded resonator. Applied Computational Electromagnetics Society Journal, 28(1), 8–20.
  • Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014, October). An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Areas in Communications, 8(5), 742–758.
  • Madhav, B. T. P., & Anil Kumar, T. (2018). Design and study of multiband planar wheel-like fractal antenna for vehicular communication applications. Microwave and Optical Technology Letters, 60, 1985–1993.
  • Ojaroudiparchin, N., Shen, M., & Pedersen, G. F. (2016, September). Investigation on the performance of low-profile insensitive antenna with improved radiation characteristics for the future 5G applications. Microwave and Optical Technology Letters, 58(9), 2148–2151.
  • Rosengren, K., & Kildal, P. S. (2006). Radiation efficiency, correlation, diversity gain and capacity of a six monopole antenna array for a MIMO system, theory, simulation and measurement in reverberation chamber. IEEE Proceedings Microwaves, Antennas and Propagation, 152(1), 7–16.
  • Sharawi, M. S. (2014). Printed MIMO antenna systems: Performance metrics, implementations and challenges. Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), 1, 1–11.
  • Sharawi, M. S., Ikram, M., & Shamim, A. (2017, December). A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6679–6686.
  • TanWang, G., Li, B. H., Miao, Q., Fang, J., Pengpeng, L., Tan, H.,Li W., Ding, J., Li, J., Wang, Y. (2017). Spectrum analysis and regulations for 5G. In W. Xiang, et al. (Ed.), 5G mobile communications (pp. 27–50). Switzerland: Springer International Publishing.
  • Usha Devi, Y., Rukmini, M. S. S., & Madhav, B. T. P. (2018). A compact conformal printed dipole antenna for 5G based vehicular communication applications. Progress In Electromagnetics Research C, 85, 191–208.
  • Usha Devi, Y., Rukmini, M. S. S., & Madhav, B. T. P. (2019). Liquid crystal polymer based flexible and conformal 5G antenna for vehicular communication. Materials Research Express, 6(1), 1–12.
  • Wang, Q., Ning, M., Wang, L., Safavi-Naeini, S., & Liu, J. (2017). 5G MIMO conformal microstrip antenna design. Wireless Communications and Mobile Computing, 2017, 1–11.
  • Wang, Z., Zhao, L., Cai, Y., Zheng, S., & Yin, Y. (2018). A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system. Scientific Reports, 8(1), 1–9.
  • Wei Lin, R. W., & Ziolkowski, T. C. B. (2017, December). 28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems. IEEE Transactions on Antennas and Propagation, 65(12), 6904–6914.
  • Yu, K., Li, Y., & Liu, X. (2018). Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Applied Computational Electromagnetics Society Journal, 33(7), 758–763.
  • Zhao, L., Liu, F., Shen, X., Jing, G., Cai, Y., & Li, Y. (2018). A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands. IEEE Access, 638097–38105.
  • Zhao, L., & Wu, K. (2015, July). A dual-band coupled resonator decoupling network for two coupled antennas. IEEE Transactions on Antennas and Propagation, 63(7), 2843–2850.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.