229
Views
20
CrossRef citations to date
0
Altmetric
Articles

Design and analysis of novel QCA full adder-subtractor

ORCID Icon, &
Pages 287-300 | Received 24 Jul 2019, Accepted 18 Jan 2020, Published online: 16 Feb 2020

References

  • Abedi, D., & Jaberipur, G. (2018). Decimal full adders specially designed for quantum-dot cellular automata. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1), 106–110.
  • Abedi, D., Jaberipur, G., & Sangsefidi, M. (2015). Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Transactions on Nanotechnology, 14(3), 497–504.
  • Ahmad, F., Bhat, G. M., Khademolhosseini, H., Azimi, S., Angizi, S., & Navi, K. (2016). Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. Journal of Computational Science, 16, 8–15.
  • Balali, M., & Rezai, A. (2018). Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. International Journal of Theoretical Physics, 57, 1948–1960.
  • R. Bardhan, T. Sultana and N. J. Lisa, “An efficient design of adder/subtractor circuit using quantum dot cellular automata,” 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, 2015, pp. 495-500.doi: https://doi.org/10.1109/ICCITechn.2015.7488121
  • Barughi, Y. Z., & Heikalabad, S. R. (2017). A three-layer full adder/subtractor structure in quantum-dot cellular automata. International Journal of Theoretical Physics, 56, 2848–2858.
  • Cocorullo, G., Corsonello, P., Frustaci, F., & Perri, S. (2017). Design of efficient BCD adders in quantum-dot cellular automata. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(5), 575–579.
  • Jing Huang, M. Momenzadeh, M. B. Tahoori and F. Lombardi, “Defect characterization for scaling of QCA devices,” 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings., Cannes, France, 2004, pp. 30-38.doi: 10.1109/DFTVS.2004.1347822
  • Jaiswal, A., Agrawal, A., & Roy, K. (2017). Robust and cascadable nonvolatile magnetoelectric majority logic. IEEE Transactions on Electron Devices, 64(12), 5209–5216.
  • Kianpour, M., Nadooshan, R. S., & Navi, K. (2014). A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. Journal of Computer and System Sciences, 80(7), 1404–1414.
  • Labrado, C., & Thapliyal, H. (2016a). Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electronics Letters, 52(6), 464–466.
  • Labrado, C., & Thapliyal, H. (2016b). Design of a multilayer five-input majority gate and adder/subtractor circuits in NML computing. Electronics Letters, 52(19), 1618–1620.
  • Lent, C. S., Isaksen, B., & Lieberman, M. (2003). Molecular quantum-dot cellular automata. Journal of the American Chemical Society, 125, 1056–1063.
  • Li, W., Yang, Y., Yan, H., & Liu., Y. (2013). Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Letters, 13(6), 2980–2988.
  • Mohammadi, M., Mohammadi, M., & Gorgin, S. (2016). An efficient design of full adder in quantum-dot cellular automata technology. Microelectronics Journal, 50, 35–43.
  • Momenzadeh, M., Huang, J., Tahoori, M. B., & Lombardi, F. (2005). On the evaluation of scaling of QCA devices in the presence of defects at manufacturing. IEEE Transactions on Nanotechnology, 4(6), 740–743.
  • M. Momenzadeh, M. Ottavi and F. Lombardi, “Modeling QCA defects at molecular-level in combinational circuits,” 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05), Monterey, CA, 2005, pp. 208-216.doi: https://doi.org/10.1109/DFTVS.2005.46.
  • Nikonov, D. E., Bourianoff, G. I., & Ghani, T. (2011a). Proposal of a spin torque majority gate logic. IEEE Electron Device Letters, 32(8), 1128–1130.
  • D. E. Nikonov, G. I. Bourianoff and T. Ghani, “Nanomagnetic circuits with spin torque majority gates,” 2011 11th IEEE International Conference on Nanotechnology, Portland, OR, 2011, pp. 1384-1388. doi: https://doi.org/10.1109/NANO.2011.6144490.
  • Oya, T., Asai, T., Fukui, T., & Amemiya, Y. (2003). A majority-logic device using an irreversible single-electron box. IEEE Transactions on Nanotechnology, 2(1), 15–22.
  • Perri, S., Corsonello, P., & Cocorullo, G. (2014). Area-delay efficient binary adders in QCA. IEEE Transactions on Very Large Scale Integration Systems, 22(5), 1174–1179.
  • Pudi, V., & Sridharan, K. (2012). Low complexity design of ripple carry and brent–kung adders in QCA. IEEE Transactions on Nanotechnology, 11(1), 105–119.
  • V. Pudi and K. Sridharan, “Efficient QCA design of single-bit and multi-bit subtractors,” 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, 2013, pp. 1155-1158. doi: https://doi.org/10.1109/NANO.2013.
  • M. Sangsefidi, M. Karimpour and M. Sarayloo, “Efficient Design of a Coplanar Adder/Subtractor in Quantum-Dot Cellular Automata,” 2015 IEEE European Modelling Symposium (EMS), Madrid, 2015, pp. 456-461. doi: https://doi.org/10.1109/EMS.2015.74.
  • Sasamal, T. N., Singh, A. K., & Ghanekar, U. (2016). Design of non-restoring binary array divider in majority logic-based QCA. Electronics Letters, 52(24), 2001–2003.
  • Sasamal, T. N., Singh, A. K., & Mohan, A. (2016). An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik, 127(20), 8576–8591.
  • Tahoori, M. B., Huang, J., Momenzadeh, M., & Lombardi, F. (2005, December). Characterization, test, and logic synthesis of And-Or-inverter (AOI) gate design for QCA implementation’. Ieee Tcad, 24(12), 1881–1893.
  • M. B. Tahoori, M. Momenzadeh, Jin Huang and F. Lombardi, “Defects and faults in quantum cellular automata at nano scale,” 22nd IEEE VLSI Test Symposium, 2004. Proceedings., Napa Valley, CA, USA, 2004, pp. 291-296. doi: https://doi.org/10.1109/VTEST.2004.1299255.
  • Yang, G., Hung, W. N. N., Song, X., & Perkowski, M. (2005). Majority-based reversible logic gates. Theoretical Computer Science, 334(1–3), 259–274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.