5,078
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Opportunities for enhancing the climate resilience of coffee production through improved crop, soil and water management

, &

References

  • Abebe, G. 2020. Dealing with climate change and other stressors: Small-scale coffee farmers in the fero-two peasant association in the Wensho district, southern Ethiopia. GeoJournal, 86(6):2539–54. Available at doi:10.1007/s10708-020-10210-7.
  • Aerts, R., L. Geeraert, G. Berecha, K. Hundera, B. Muys, H. De Kort, and O. Honnay. 2017. Conserving wild Arabica coffee: Emerging threats and opportunities. Agriculture, Ecosystems & Environment 237:75–79. doi:10.1016/j.agee.2016.12.023.
  • Aguiar, M. I. D. (2008) Qualidade física do solo em sistemas agroflorestais, Master’s Thesis. Universidade Federal de Viçosa, Brasil.
  • Alpízar, F., F. Carlsson, and M. A. Naranjo. 2011. The effect of ambiguous risk, and coordination on farmers’ adaptation to climate change – a framed field experiment. Ecological Economics 70 (12):2317–26. doi:10.1016/j.ecolecon.2011.07.004.
  • Andrade, H. J., and P. C. Zapata. 2019. Mitigation of climate change of coffee production systems in cundinamarca, colombia. Floresta e Ambiente, 26 Instituto de Florestas da Universidade Federal Rural do Rio de Janeiro 26 (3): Available at. doi:10.1590/2179-8087.012618.
  • Armbrecht, I., I. Perfecto, and J. Vandermeer. 2004. Enigmatic biodiversity correlations: Ant diversity responds to diverse resources. Science 304 (5668):284–86. doi:10.1126/science.1094981.
  • Avelino, J., M. Cristancho, S. Georgiou, P. Imbach, L. Aguilar, G. Bornemann, P. Läderach, F. Anzueto, A. J. Hruska, and C. Morales. 2015. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Security 7 (2):303–21. doi:10.1007/s12571-015-0446-9.
  • Baca, M., P. Läderach, J. Haggar, G. Schroth, O. Ovalle, and B. Bond-Lamberty. 2014. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in mesoamerica. PLoS ONE 9 (2):e88463. doi:10.1371/journal.pone.0088463.
  • Barrucand, M. G., C. Giraldo Vieira, and P. O. Canziani. 2017. Climate change and its impacts: Perception and adaptation in rural areas of Manizales, Colombia. Climate and Development 9 (5):415–27. doi:10.1080/17565529.2016.1167661.
  • Bebber, D. P., A. D. Castillo, and S. J. Gurr. 2016. ‘Modelling coffee leaf rust risk in Colombia with climate reanalysis data’ Phil, R. Soc. Trans., B371. doi:10.1098/rstb.2015.0458
  • Beer, J., R. Muschler, D. Kass, and E. Somarriba. 1998. Shade management in coffee and cacao plantations. In Directions in tropical agroforestry research, P. K. R. Nair and C. R. Latt, ed. Forestry SciencesAvailable at, 139–64. Dordrecht, Netherlands: Springer Netherlands. doi:10.1007/978-94-015-9008-2_6.
  • Betemariyam, M., M. Negash, and A. Worku. 2020. Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Forestry 19 (3):319–34. doi:10.1007/s11842-020-09439-4.
  • Boreux, V., C. G. Kushalappa, P. Vaast, and J. Ghazoul. 2013. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems. Proceedings of the National Academy of Sciences 110 (21):8387–92. doi:10.1073/pnas.1210590110.
  • Bro, A. S., D. C. Clay, D. L. Ortega, and M. C. Lopez. 2019. Determinants of adoption of sustainable production practices among smallholder coffee producers in Nicaragua. Environment, Development and Sustainability 21 (2):895–915. doi:10.1007/s10668-017-0066-y.
  • Bro, A. S., D. L. Ortega, D. C. Clay, and R. B. Richardson. 2020. Understanding individuals’ incentives for climate change adaptation in Nicaragua’s coffee sector. Climate and Development 12 (4):332–42. doi:10.1080/17565529.2019.1619506.
  • Bunn, C., P. Läderach, J. G. P. Jimenez, C. Montagnon, T. Schilling, and J. A. Añel. 2015. Multiclass classification of agro-ecological zones for arabica coffee: An improved understanding of the impacts of climate change. PLos One, 10(10):e0140490. Public Library of Science doi:10.1371/journal.pone.0140490.
  • Bunn, C., P. Läderach, O. Ovalle Rivera, and D. Kirschke. 2015. A bitter cup: Climate change profile of global production of Arabica and Robusta coffee. Climatic Change 129 (1–2):89–101. doi:10.1007/s10584-014-1306-x.
  • Burgess, S. S. O., M. A. Adams, N. C. Turner, and C. K. Ong. 1998. The redistribution of soil water by tree root systems. Oecologia 115 (3):306–11. doi:10.1007/s004420050521.
  • Camargo, M. B. P. D. 2010. The impact of climatic variability and climate change on Arabic coffee crop in Brazil. Bragantia 69 (1):239–47. doi:10.1590/S0006-87052010000100030.
  • Canal-Daza, D., and H. Andrade-Castañeda. 2019. Adaptation to climate change in coffee production systems in Tolima. Floresta e Ambiente 26 (3). doi:10.1590/2179-8087.116517.
  • Capitani, C., W. Garedew, A. Mitiku, G. Berecha, B. T. Hailu, J. Heiskanen, P. Hurskainen, P. J. Platts, M. Siljander, F. Pinard, et al. 2019. Views from two mountains: Exploring climate change impacts on traditional farming communities of Eastern Africa highlands through participatory scenarios. Sustainability Science 14 (1):191–203. doi:10.1007/s11625-018-0622-x.
  • Caramori, P. H., A. Androcioli Filho, and A. C. Leal. 1996. Coffee shade with Mimosa scabrella benth. for frost protection in southern Brazil. Agroforestry Systems 33 (3):205–14. doi:10.1007/BF00055423.
  • Carr, M. K. V. 2000. The Water relations and irrigation requirements of coffee. Experimental agriculture 37 (1):1–36. doi:10.1017/S0014479701001090.
  • Carr, M. K. V. 2001. The water relations and irrigation requirements of coffee. Experimental Agriculture 37 (1):1–36.
  • Castellanos, E. J., C. Tucker, H. Eakin, H. Morales, J. F. Barrera, and R. Díaz. 2013. Assessing the adaptation strategies of farmers facing multiple stressors: Lessons from the coffee and global changes project in Mesoamerica. Environmental Science & Policy 26:19–28. doi:10.1016/j.envsci.2012.07.003.
  • Chain-Guadarrama, A., A. Martínez-Salinas, N. Aristizábal, and T. H. Ricketts. 2019. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agriculture, Ecosystems & Environment 280:53–67. doi:10.1016/j.agee.2019.04.011.
  • Chemura, A., D. Kutywayo, P. Chidoko, and C. Mahoya. 2016. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea Arabica) production in Zimbabwe. Regional Environmental Change 16 (2):473–85. doi:10.1007/s10113-015-0762-9.
  • Chengappa, P. G., C. M. Devika, and C. S. Rudragouda. 2017. Climate variability and mitigation: Perceptions and strategies adopted by traditional coffee growers in India. Climate and Development 9 (7):593–604. doi:10.1080/17565529.2017.1318740.
  • Coltri, P. P., H. S. Pinto, R. R. D. V. Gonçalves, J. Zullo Junior, and V. Dubreuil. 2019. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon 5 (2):e01263. doi:10.1016/j.heliyon.2019.e01263.
  • Craparo, A. C. W., P. J. A. Van Asten, P. Läderach, L. T. P. Jassogne, and S. W. Grab. 2015. Coffea Arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology 207:1–10. doi:10.1016/j.agrformet.2015.03.005.
  • DaMatta, F. M. 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research 86 (2):99–114. doi:10.1016/j.fcr.2003.09.001.
  • DaMatta, F. M., E. Rahn, P. Läderach, R. Ghini, and J. C. Ramalho. 2019. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Climatic Change 152 (1):167–78. doi:10.1007/s10584-018-2346-4.
  • DaMatta, F. M., and J. D. C. Ramalho. 2006. Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology 18 (1):55–81. doi:10.1590/S1677-04202006000100006.
  • DaMatta, F. M., C. P. Ronchi, M. Maestri, and R. S. Barros. 2007. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology 19 (4):485–510. doi:10.1590/S1677-04202007000400014.
  • Davis, A. P., H. Chadburn, J. Moat, R. O’Sullivan, S. Hargreaves, and E. N. Lughadha. 2019. High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5 (1). doi:10.1126/sciadv.aav3473.
  • Davis, A. P., T. W. Gole, S. Baena, J. Moat, and B. Fenton. 2012. The impact of climate change on indigenous arabica coffee (Coffea Arabica): predicting future trends and identifying priorities. PLoS ONE 7 (11):e47981. doi:10.1371/journal.pone.0047981.
  • Davis, A. P., D. Mieulet, J. Moat, D. Sarmu, and J. Haggar. 2021. Arabica-like flavour in a heat-tolerant wild coffee species. Nature Plants 7 (4):413–18. doi:10.1038/s41477-021-00891-4.
  • de Sousa, K., M. van Zonneveld, M. Holmgren, R. Kindt, and J. C. Ordoñez. 2019. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Reports 9 (1): Nature Publishing Group. doi:10.1038/s41598-019-45491-7.
  • de Souza, H. N., R. G. M. de Goede, L. Brussaard, I. M. Cardoso, E. M. G. Duarte, R. B. A. Fernandes, L. C. Gomes, and M. M. Pulleman. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment 146 (1):179–96. doi:10.1016/j.agee.2011.11.007.
  • Devagiri, G. M., A. K. Khaple, H. B. Anithraj, C. G. Kushalappa, A. K. Krishnappa, and S. B. Mishra. 2020. Assessment of tree diversity and above-ground biomass in coffee agroforest dominated tropical landscape of India’s Central Western Ghats. Journal of Forestry Research 31 (3):1005–15. doi:10.1007/s11676-019-00885-1.
  • dos Santos, C. A. F., A. E. Leitao, I. P. Pais, F. C. Lidon, and J. C. Ramalho. 2015. Perspectives on the potential impacts of climate changes on coffee plant and bean quality. Emirates Journal of Food and Agriculture 27 (2):152–63. doi:10.9755/ejfa.v27i2.19468.
  • Dufour, B. P., I. W. Kerana, and F. Ribeyre. 2019. Effect of coffee tree pruning on berry production and coffee berry borer infestation in the Toba Highlands (North Sumatra). Crop Protection 122:151–58. doi:10.1016/j.cropro.2019.05.003.
  • Dumont, E. S., A. Gassner, G. Agaba, R. Nansamba, and F. Sinclair. 2019. The utility of farmer ranking of tree attributes for selecting companion trees in coffee production systems. Agroforestry Systems 93 (4):1469–83. doi:10.1007/s10457-018-0257-z.
  • Eakin, H., C. M. Tucker, E. Castellanos, R. Diaz-Porras, J. F. Barrera, and H. Morales. 2014. Adaptation in a multi-stressor environment: Perceptions and responses to climatic and economic risks by coffee growers in Mesoamerica. Environment, Development and Sustainability 16 (1):123–39. doi:10.1007/s10668-013-9466-9.
  • Eakin, H., A. Winkels, and J. Sendzimir. 2009. Nested vulnerability: Exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environmental Science & Policy 12 (4):398–412. doi:10.1016/j.envsci.2008.09.003.
  • Elevitch, C. R., D. N. Mazaroli, and D. Ragone. 2018. Agroforestry standards for regenerative agriculture. Sustainability 10 (9): Multidisciplinary Digital Publishing Institute. doi:10.3390/su10093337.
  • Eshetu, G., T. Johansson, W. Garedew, and T. Yisahak. 2021. Determinants of smallholder farmers’ adaptation options to climate change in a coffee-based farming system of Southwest Ethiopia. Climate and Development, 13(4):318–25. Taylor & Francis doi:10.1080/17565529.2020.1772706.
  • Fain, S. J., M. Quiñones, N. L. Álvarez-Berríos, I. K. Parés-Ramos, and W. A. Gould. 2018. Climate change and coffee: Assessing vulnerability by modeling future climate suitability in the Caribbean island of Puerto Rico. Climatic Change 146 (1–2):175–86. doi:10.1007/s10584-017-1949-5.
  • FAO. (2015). ‘Phasing out Highly Hazardous Pesticides is possible! Farmer experiences in growing coffee without endosulfan’. Available at: http://www.fao.org/3/i4573e/i4573e.pdf/ [Accessed 10 July 2021].
  • FAOSTAT. (2019). Crop and livestock products. Available at: http://www.fao.org/3/i4573e/i4573e.pdf [Accessed 15 June 2021].
  • Gallopín, G. C. 2006. Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change 16 (3):293–303. doi:10.1016/j.gloenvcha.2006.02.004.
  • Garedew, W., B. T. Hailu, F. Lemessa, P. Pellikka, and F. Pinard. 2017. Coffee shade tree management: An adaptation option for climate change impact for small scale coffee growers in South-West Ethiopia. In Climate Change Adaptation in Africa. Climate Change Management, W. Leal Filho, S. Belay, J. Kalangu, W. Menas, P. Munishi, and K. Musiyiwa, ed., 647–59. Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-49520-0_40.
  • Garzón, A. F., L. P. P. Rivas, and L. M. Avellaneda-Torres. 2020. Effect of management (ecological and conventional) on functional groups of soil microorganisms in coffee agroecosystems with different resilience to climate variability, Colombia. Acta Scientiarum Biological Sciences 42:e48620. doi:10.4025/actascibiolsci.v42i1.48620.
  • Gidey, T., T. S. Oliveira, J. Crous-Duran, and J. H. N. Palma. 2020. Using the yield-SAFE model to assess the impacts of climate change on yield of coffee (Coffea Arabica L.) under agroforestry and monoculture systems. Agroforestry Systems 94 (1):57–70. doi:10.1007/s10457-019-00369-5.
  • Giovannucci, D., and F. J. Koekoek (2007) The State of Sustainable Coffee: A Study of Twelve Major Markets. Rochester, NY: Social Science Research Network. https://papers.ssrn.com/abstract=996763
  • Girkin, N. T., and H. V. Cooper. 2022. Nitrogen and ammonia in soils. In Module in earth systems and environmental sciences. Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-822974-3.00010-0
  • Gomes, L. C., F. J. J. A. Bianchi, I. M. Cardoso, R. B. A. Fernandes, E. I. F. Filho, and R. P. O. Schulte. 2020. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems & Environment 294:106858. doi:10.1016/j.agee.2020.106858.
  • Häger, A. 2012. The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforestry Systems 86 (2):159–74. doi:10.1007/s10457-012-9545-1.
  • Hammersley, M. 2001. On “systematic” reviews of research literatures: A “narrative” response to evans & benefield. British Educational Research Journal 27 (5):543–54. doi:10.1080/01411920120095726.
  • Harvey, C. A., M. Saborio-Rodríguez, M. R. Martinez-Rodríguez, B. Viguera, A. Chain-Guadarrama, R. Vignola, and F. Alpizar. 2018. Climate change impacts and adaptation among smallholder farmers in Central America. Agriculture & Food Security 7 (1):57. doi:10.1186/s40066-018-0209-x.
  • Hirons, M., Z. Mehrabi, T. A. Gonfa, A. Morel, T. W. Gole, C. McDermott, E. Boyd, E. Robinson, D. Sheleme, Y. Malhi, et al. 2018. Pursuing climate resilient coffee in Ethiopia – a critical review. Geoforum 91:108–16. doi:10.1016/j.geoforum.2018.02.032.
  • Hochachka, G. (2021) ‘Integrating the four faces of climate change adaptation: Towards transformative change in Guatemalan coffee communities’, World Development, 105361
  • Imbach, P., E. Fung, L. Hannah, C. E. Navarro-Racines, D. W. Roubik, T. H. Ricketts, C. A. Harvey, C. I. Donatti, P. Läderach, B. Locatelli, et al. 2017. Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences 114 (39):10438–42. doi:10.1073/pnas.1617940114.
  • IPCC. 2018. Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty’, ed., Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, Geneva: World Meteorological Organization. Available at https://www.ipcc.ch/sr15/
  • IPCC (2021) Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • Jacobi, J., S.-L. Mathez-Stiefel, H. Gambon, S. Rist, and M. Altieri. 2017. Whose knowledge, whose development? Use and role of local and external knowledge in agroforestry projects in Bolivia. Environmental Management 59 (3):464–76. doi:10.1007/s00267-016-0805-0.
  • Jaramillo, J., A. Chabi-Olaye, C. Kamonjo, A. Jaramillo, F. E. Vega, H.-M. Poehling, and C. Borgemeister. 2009. Thermal tolerance of the coffee berry borer hypothenemus hampei: Predictions of climate change impact on a tropical insect pest. PLos One, 4(8):e6487. Public Library of Science doi:10.1371/journal.pone.0006487.
  • Jaramillo, J., E. Muchugu, F. E. Vega, A. Davis, C. Borgemeister, A. Chabi-Olaye, and S. Thrush. 2011. Some like it hot: The influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PloS One 6 (9):e24528. doi:10.1371/journal.pone.0024528.
  • Jaramillo, J., M. Setamou, E. Muchugu, A. Chabi-Olaye, A. Jaramillo, J. Mukabana, J. Maina, S. Gathara, C. Borgemeister, and J. P. Hart. 2013. Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the Last 80 Years. PLoS ONE 8 (1):e51815. doi:10.1371/journal.pone.0051815.
  • Jezeer, R. E., P. A. Verweij, R. G. A. Boot, M. Junginger, and M. J. Santos. 2019. Influence of livelihood assets, experienced shocks and perceived risks on smallholder coffee farming practices in Peru. Journal of Environmental Management 242:496–506. doi:10.1016/j.jenvman.2019.04.101.
  • Jha, S., C. M. Bacon, S. M. Philpott, V. Ernesto Méndez, P. Läderach, and R. A. Rice. 2014. Shade coffee: Update on a disappearing refuge for biodiversity. BioScience 64 (5):416–28. doi:10.1093/biosci/biu038.
  • Kath, J., V. M. Byrareddy, A. Craparo, T. Nguyen-Huy, S. Mushtaq, L. Cao, and L. Bossolasco. 2020. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biology 26 (6):3677–88. doi:10.1111/gcb.15097.
  • Kjellstrom, T., I. Holmer, and B. Lemke. 2009. Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries during climate change. Globalization and Health, 2(1):2047. Action, 2 doi:10.3402/gha.v2i0.2047.
  • Läderach, P., M. Lundy, A. Jarvis, J. Ramirez, E. P. Portilla, K. Schepp, and A. Eitzinger. 2011. Predicted impact of climate change on coffee supply chains. In Leal Filho, W. (ed.) The Economic, Social and Political Elements of Climate Change, 703–23. Berlin: Springer. Climate Change Management. 10.1007/978-3-642-14776-0_42.
  • Läderach, P., J. Ramirez–Villegas, C. Navarro-Racines, C. Zelaya, A. Martinez–Valle, and A. Jarvis. 2017. Climate change adaptation of coffee production in space and time. Climatic Change 141 (1):47–62. doi:10.1007/s10584-016-1788-9.
  • Lin, B. B. 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology 144 (1–2):85–94. doi:10.1016/j.agrformet.2006.12.009.
  • Lin, B. B. 2009. Coffee (Café Arabica var. Bourbon) fruit growth and development under varying shade levels in the soconusco region of chiapas, Mexico. Journal of Sustainable Agriculture 33 (1):51–65. doi:10.1080/10440040802395007.
  • Lin, B. B. 2010. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology 150 (4):510–18. doi:10.1016/j.agrformet.2009.11.010.
  • Li, D.-Z., and H. W. Pritchard. 2009. The science and economics of ex situ plant conservation. Trends in Plant Science 14 (11):614–21. doi:10.1016/j.tplants.2009.09.005.
  • Moat, J., J. Williams, S. Baena, T. Wilkinson, T. W. Gole, Z. K. Challa, S. Demissew, and A. P. Davis. 2017. Resilience potential of the Ethiopian coffee sector under climate change. Nature Plants 3 (7):1–14. doi:10.1038/nplants.2017.81.
  • Moreira, S. L. S., C. V. Pires, G. E. Marcatti, R. H. S. Santos, H. M. A. Imbuzeiro, and R. B. A. Fernandes. 2018. Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural and Forest Meteorology 256–257:379–90. doi:10.1016/j.agrformet.2018.03.026.
  • Muschler, R. G. 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems 85 (2):131–39. doi:10.1023/A:1010603320653.
  • Nesper, M., C. Kueffer, S. Krishnan, C. G. Kushalappa, J. Ghazoul, and J. Firn. 2019. Simplification of shade tree diversity reduces nutrient cycling resilience in coffee agroforestry. Journal of Applied Ecology 56 (1):119–31. doi:10.1111/1365-2664.13176.
  • Nguyen, N., and E. G. Drakou. 2021. Farmers intention to adopt sustainable agriculture hinges on climate awareness: The case of Vietnamese coffee. Journal of Cleaner Production 303:126828. doi:10.1016/j.jclepro.2021.126828.
  • Noponen, M. R. A., G. Edwards-Jones, J. P. Haggar, G. Soto, N. Attarzadeh, and J. R. Healey. 2012. Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agriculture, Ecosystems & Environment 151:6–15. doi:10.1016/j.agee.2012.01.019.
  • Noponen, M. R. A., J. R. Healey, G. Soto, and J. P. Haggar. 2013. Sink or source—The potential of coffee agroforestry systems to sequester atmospheric CO2 into soil organic carbon. Agriculture, Ecosystems & Environment 175:60–68. doi:10.1016/j.agee.2013.04.012.
  • Ovalle-Rivera, O., P. Läderach, C. Bunn, M. Obersteiner, G. Schroth, and R. D. Loyola. 2015. Projected shifts in coffea arabica suitability among major global producing regions due to climate change. PLOS ONE 10 (4):e0124155. doi:10.1371/journal.pone.0124155.
  • Pappo, E., C. Wilson, S. L. Flory, and M. Schipanksi. 2021. Hybrid coffee cultivars may enhance agroecosystem resilience to climate change. AoB Plants 13 (2): Available at. doi:10.1093/aobpla/plab010.
  • Perfecto, I., Z. Hajian-Forooshani, A. Iverson, A. D. Irizarry, J. Lugo-Perez, N. Medina, C. Vaidya, A. White, and J. Vandermeer. 2019. Response of coffee farms to hurricane maria: Resistance and resilience from an extreme climatic event. Scientific Reports 9 (1):15668. doi:10.1038/s41598-019-51416-1.
  • Perfecto, I., M. E. Jiménez-Soto, and J. Vandermeer. 2019. Coffee landscapes shaping the anthropocene: Forced simplification on a complex agroecological landscape. Current Anthropology 60 (S20):S236–S50. doi:10.1086/703413.
  • Perfecto, I., and J. H. Vandermeer. 2015. Coffee agroecology: A new approach to understanding agricultural biodiversity, ecosystem services, and sustainable development. London, New York, USA: Routledge. doi:10.4324/9780203526712.
  • Pham, Y., K. Reardon-Smith, S. Mushtaq, and G. Cockfield. 2019. The impact of climate change and variability on coffee production: A systematic review. Climatic Change 156 (4):609–30. doi:10.1007/s10584-019-02538-y.
  • Pickering, C., J. Grignon, R. Steven, D. Guitart, and J. Byrne. 2015. Publishing not perishing: How research students transition from novice to knowledgeable using systematic quantitative literature reviews. Studies in Higher Education 40 (10):1756–69. doi:10.1080/03075079.2014.914907.
  • Quiroga, S., C. Suárez, J. Diego Solís, and P. Martinez-Juarez. 2020. Framing vulnerability and coffee farmers’ behaviour in the context of climate change adaptation in Nicaragua. World Development 126:104733. doi:10.1016/j.worlddev.2019.104733.
  • Quiroga, S., C. Suárez, and J. D. Solís. 2015. Exploring coffee farmers’ awareness about climate change and water needs: Smallholders’ perceptions of adaptive capacity. Environmental Science & Policy 45:53–66. doi:10.1016/j.envsci.2014.09.007.
  • Rahn, E., P. Läderach, M. Baca, C. Cressy, G. Schroth, D. Malin, H. van Rikxoort, and J. Shriver. 2014. Climate change adaptation, mitigation and livelihood benefits in coffee production: Where are the synergies? Mitigation and Adaptation Strategies for Global Change 19 (8):1119–37. doi:10.1007/s11027-013-9467-x.
  • Ramirez-Villegas, J., M. Salazar, A. Jarvis, and C. E. Navarro-Racines. 2012. A way forward on adaptation to climate change in Colombian agriculture: Perspectives towards 2050. Climatic Change 115 (3–4):611–28. doi:10.1007/s10584-012-0500-y.
  • Reay, D. 2019. Climate-smart coffee. In Climate-smart food, D. Reay, ed. Available at, 93–104. Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-030-18206-9_8.
  • Rhiney, K., Z. Guido, C. Knudson, J. Avelino, C. M. Bacon, G. Leclerc, and M. C. Aime, D. P. Bebber. 2021. Epidemics and the future of coffee production. Proceedings of the National Academy of Sciences 118 (27). doi:10.1073/pnas.2023212118.
  • Rice, R. A. 1999. A place unbecoming: The coffee farm of Northern Latin America*. Geographical Review 89 (4):554–79. doi:10.1111/j.1931-0846.1999.tb00234.x.
  • Ruiz Meza, L. E. 2015. Adaptive capacity of small-scale coffee farmers to climate change impacts in the Soconusco region of Chiapas, Mexico. Climate and Development 7 (2):100–09. doi:10.1080/17565529.2014.900472.
  • Salamanca-Jimenez, A., T. A. Doane, and W. R. Horwath. 2017. Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Frontiers in Plant Science 8: Frontiers Available at. doi:10.3389/fpls.2017.00223.
  • Sarmiento-Soler, A., P. Vaast, M. P. Hoffmann, L. Jassogne, P. van Asten, S. Graefe, and R. P. Rötter. 2020. Effect of cropping system, shade cover and altitudinal gradient on coffee yield components at Mt. Elgon, Uganda. Agriculture, Ecosystems & Environment 295:106887. doi:10.1016/j.agee.2020.106887.
  • Schepp, K. 2009. Smallholders adapt to climate change. Appropriate Technology 36 (3):64–67. Burnham, United Kingdom: Research Information Ltd.
  • Schroth, G., P. Läderach, D. S. Blackburn Cuero, J. Neilson, and C. Bunn. 2015. Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Regional Environmental Change 15 (7):1473–82. doi:10.1007/s10113-014-0713-x.
  • Schroth, G., P. Laderach, J. Dempewolf, S. Philpott, J. Haggar, H. Eakin, T. Castillejos, J. Garcia Moreno, L. Soto Pinto, R. Hernandez, et al. 2009. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 14 (7):605–25. doi:10.1007/s11027-009-9186-5.
  • Shapiro-Garza, E., D. King, A. Rivera-Aguirre, S. Wang, and J. Finley-Lezcano. 2020. A participatory framework for feasibility assessments of climate change resilience strategies for smallholders: Lessons from coffee cooperatives in Latin America. International Journal of Agricultural Sustainability 18 (1):21–34. doi:10.1080/14735903.2019.1658841.
  • Shinbrot, X. A., K. W. Jones, A. Rivera-Castañeda, W. López-Báez, and D. S. Ojima. 2019. Smallholder farmer adoption of climate-related adaptation strategies: the importance of vulnerability context, livelihood assets, and climate perceptions. Environmental Management 63 (5):583–95. doi:10.1007/s00267-019-01152-z.
  • Soto-Pinto, L., M. Anzueto, J. Mendoza, G. J. Ferrer, and B. de Jong. 2010. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems 78 (1):39–51. doi:10.1007/s10457-009-9247-5.
  • Souza, H. N., I. M. Cardoso, J. M. Fernandes, F. C. P. Garcia, V. R. Bonfim, A. C. Santos, A. F. Carvalho, and E. S. Mendonça. 2010. Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agroforestry Systems 80 (1):1–16. doi:10.1007/s10457-010-9340-9.
  • Tanner, T., D. Lewis, D. Wrathall, R. Bronen, N. Cradock-Henry, S. Huq, C. Lawless, R. Nawrotzki, V. Prasad, M. A. Rahman et al. 2015. Livelihood resilience in the face of climate change. Nature Climate Change. 5(1):23–26. doi:10.1038/nclimate2431.
  • Tschora, H., and F. Cherubini (2020) ‘Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa’, Global Ecology and Conservation, 22.
  • Valencia, V., L. García-Barrios, E. J. Sterling, P. West, A. Meza-Jiménez, and S. Naeem. 2018. Smallholder response to environmental change: Impacts of coffee leaf rust in a forest frontier in Mexico. Land Use Policy 79:463–74. doi:10.1016/j.landusepol.2018.08.020.
  • Van Der Vossen, H. A. M. 2005. A critical analysis of the agronomic and economic sustainability of organic coffee production. Experimental Agriculture 41 (4):449–73. doi:10.1017/S0014479705002863.
  • Van Der Wolf, J., L. Jassogne, G. Gram, and P. Vaast. 2019. Turning local knowledge on agroforestry into an online decision-support tool for tree selection in smallholders’ farms. Experimental Agriculture 55 (S1):50–66. doi:10.1017/S001447971600017X.
  • Vietoris, V., P. Zajác, J. Čapla, A. Mendelová, K. Križanová, and L. Benešová. 2021. Comparison of coffee species by sensory panel and electronic nose. Journal of Microbiology, Biotechnology and Food Sciences 234–37.
  • Wagner, S., L. Jassogne, E. Price, M. Jones, and R. Preziosi. 2021. Impact of climate change on the production of coffea arabica at Mt. Kilimanjaro, Tanzania. Agriculture 11 (1):53.
  • Watts, C. (2016) ‘A Brewing Storm: The climate change risks to coffee’, available at: https://files.fairtrade.net/publications/2016_TCI_ABrewingStorm.pdf [Accessed 10 July 2021].
  • Zaro, G. C., P. H. Caramori, G. M. Yada Junior, C. R. Sanquetta, A. A. Filho, A. L. P. Nunes, C. E. C. Prete, and P. Voroney. 2020. Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems 94 (3):799–809. doi:10.1007/s10457-019-00450-z.
  • Zullo, J., H. S. Pinto, E. D. Assad, and A. M. H. de Ávila. 2011. Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Climatic Change 109 (3–4):535–48. doi:10.1007/s10584-011-0058-0.