132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the relationship between tree diversity and carbon storage in aboveground biomass of coffee agroforestry systems in southern Manabí, Ecuador

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Agbelade, A. D., and J. C. Onyekwelu. 2020. Tree species diversity, volume yield, biomass and carbon sequestration in urban forests in two Nigerian cities. Urban Ecosystems 23 (5):957–70. doi:10.1007/s11252-020-00994-4.
  • Ammer, C. 2019. Diversity and forest productivity in a changing climate. The New Phytologist 221 (1):50–66. doi:https://doi.org/10.1111/nph.15263.
  • An, Z., E. W. Bork, X. Duan, C. D. Gross, C. N. Carlyle, and S. X. Chang. 2022. Quantifying past, current, and future forest carbon stocks within agroforestry systems in central Alberta, Canada. GCB Bioenergy 14 (6):669–80. doi:10.1111/gcbb.12934.
  • Beets, P. N., and L. G. Garrett. 2018. Carbon fraction of pinus radiata biomass components within New Zealand. New Zealand Journal of Forestry Science 48 (1):14. doi:10.1186/s40490-018-0119-5.
  • Betemariyam, M., M. Negash, and A. Worku. 2020. Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Forestry 19 (3):319–34. doi:10.1007/s11842-020-09439-4.
  • Cardozo, E. G., D. Celentano, G. X. Rousseau, H. R. E. Silva, H. M. Muchavisoy, and C. Gehring. 2022. Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agroforestry Systems 96 (5):941–56. doi:10.1007/s10457-022-00754-7.
  • Cetin, M. 2020. The changing of important factors in the landscape planning occur due to Global climate change in temperature, rain and climate types: A case study of Mersin city. Turkish Journal of Agriculture - Food Science & Technology 8 (12):2695–701. doi:10.24925/turjaf.v8i12.2695-2701.3891.
  • Chao, A., K. H. Ma, and T. C. Hsieh (2016). iNEXT (iNterpolation and EXTrapolation) online: Software for interpolation and extrapolation of species diversity. Program and User’s Guide. https://Chao.Stat.Nthu.Edu.Tw/Wordpress/Software_download.
  • Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, and T. Kira. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1):87–99. doi:10.1007/s00442-005-0100-x.
  • Chemeda, B. A., F. S. Wakjira, and E. B. Hizikias. 2022. Tree diversity and biomass carbon stock analysis along altitudinal gradients in coffee-based agroforestry system of western Ethiopia. Cogent Food & Agriculture 8 (1):2123767. doi:10.1080/23311932.2022.2123767.
  • Chen, S., W. Wang, W. Xu, Y. Wang, H. Wan, D. Chen, Z. Tang, X. Tang, G. Zhou, Z. Xie, et al. 2018. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America 115 (16):4027–32. doi:10.1073/pnas.1700298114.
  • Coulibaly, J. Y., B. Chiputwa, T. Nakelse, and G. Kundhlande. 2017. Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agricultural Systems 155:52–69. doi:10.1016/j.agsy.2017.03.017.
  • Crist, E., C. Mora, and R. Engelman. 2017. The interaction of human population, food production, and biodiversity protection. Science 356 (6335):260–64. doi:10.1126/science.aal2011.
  • DaMatta, F. M. 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research 86 (2):99–114. doi:10.1016/j.fcr.2003.09.001.
  • Devagiri, G. M., A. K. Khaple, H. B. Anithraj, C. G. Kushalappa, A. K. Krishnappa, and S. B. Mishra. 2020. Assessment of tree diversity and above-ground biomass in coffee agroforest dominated tropical landscape of India’s central western ghats. Journal of Forestry Research 31 (3):1005–15. doi:10.1007/s11676-019-00885-1.
  • Dibaba, A., T. Soromessa, and B. Workineh. 2019. Carbon stock of the various carbon pools in gerba-dima moist afromontane forest, south-western Ethiopia. Carbon Balance and Management 14 (1):1. doi:10.1186/s13021-019-0116-x.
  • Doğan, N. 2018. The impact of Agriculture on CO2 emissions in China. Panoeconomicus 66 (2):257–71. doi:10.2298/PAN160504030D.
  • Duffy, C., G. G. Toth, R. P. O. Hagan, P. C. McKeown, S. A. Rahman, Y. Widyaningsih, T. C. H. Sunderland, and C. Spillane. 2021. Agroforestry contributions to smallholder farmer food security in Indonesia. Agroforestry Systems 95 (6):1109–24. doi:10.1007/s10457-021-00632-8.
  • FAO, FIDA, OMS, PMA y UNICEF. 2022. El estado de la seguridad alimentaria y la nutrición en el mundo 2022. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. doi:10.4060/cc0639es.
  • Forrester, D. I., and J. Bauhus. 2016. A review of processes behind diversity—productivity relationships in forests. Current Forestry Reports 2 (1):45–61. doi:10.1007/s40725-016-0031-2.
  • Foster, J. R., A. O. Finley, A. W. D’Amato, J. B. Bradford, and S. Banerjee. 2016. Predicting tree biomass growth in the temperate–boreal ecotone: Is tree size, age, competition, or climate response most important? Global Change Biology 22 (6):2138–51. doi:10.1111/gcb.13208.
  • Giudice-Badari, C., L. E. Bernardini, D. R. A. Almeida, P. H. S. Brancalion, R. G. César, V. Gutierrez, R. L. Chazdon, H. B. Gomes, and R. A. G. Viani. 2020. Ecological outcomes of agroforests and restoration 15 years after planting. Restoration Ecology 28 (5):1135–44. doi:10.1111/rec.13171.
  • Grossiord, C. 2020. Having the right neighbors: How tree species diversity modulates drought impacts on forests. New Phytologist 228 (1):42–49. doi:10.1111/nph.15667.
  • Guillemot, J., G. le Maire, M. Munishamappa, F. Charbonnier, and P. Vaast. 2018. Native coffee agroforestry in the western ghats of India maintains higher carbon storage and tree diversity compared to exotic agroforestry. Agriculture, Ecosystems & Environment 265:461–69. doi:10.1016/j.agee.2018.06.002.
  • Guo, W., L. Jiang, B. Cheng, Y. Yao, C. Wang, Y. Kou, S. Xu, and D. Xian. 2022. A study of subtropical park thermal comfort and its influential factors during summer. Journal of Thermal Biology 109:103304. doi:10.1016/j.jtherbio.2022.103304.
  • Häger, A. 2012. The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforest Syst 86 (2):159–74. doi:10.1007/s10457-012-9545-1.
  • Haggar, J., M. Barrios, M. Bolaños, M. Merlo, P. Moraga, R. Munguia, A. Ponce, S. Romero, G. Soto, C. Staver, et al. 2011. Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in central America. Agroforestry Systems 82 (3):285–301. doi:10.1007/s10457-011-9392-5.
  • Harmon, M. E., W. K. Ferrell, and J. F. Franklin. 1990. Effects on carbon storage of conversion of old-growth forests to young forests. Science 247 (4943):699–702. doi:10.1126/science.247.4943.699.
  • Hetland, J., P. Yowargana, S. Leduc, and F. Kraxner. 2016. Carbon-negative emissions: Systemic impacts of biomass conversion: A case study on CO2 capture and storage options. International Journal of Greenhouse Gas Control 49:330–42. doi:10.1016/j.ijggc.2016.03.017.
  • Homeier, J., S.-W. Breckle, S. Günter, R. T. Rollenbeck, and C. Leuschner. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42 (2):140–48. doi:10.1111/j.1744-7429.2009.00547.x.
  • Honorio, E. N., and T. R. Baker. (2010). Manual para el monitoreo del ciclo del carbono en bosques amazónicos. Instituto de Investigaciones de la Amazonia Peruana. Universidad de Leeds Lima. http://www.rainfor.org/upload/ManualsSpanish/Honorio_Baker2010%20Manual%20carbono.pdf
  • Huang, S., S. Ghazali, H. Azadi, S. Movahhed Moghaddam, A. H. Viira, K. Janečková, P. Sklenička, D. Lopez-Carr, M. Köhl, and A. Kurban. 2023. Contribution of agricultural land conversion to global GHG emissions: A meta-analysis. Science of the Total Environment 876:162269. doi:10.1016/j.scitotenv.2023.162269.
  • IPCC. (2006). Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, Forestry and other land use. Obtenido de. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf
  • Kabelong Banoho, L. P. R., L. Zapfack, R. B. Weladji, C. Chimi Djomo, M. C. Nyako, Y. E. Bocko, D. M. Essono, J. M. Nasang, N. Madountsap Tagnang, C. I. Memvi Abessolo, et al. 2020. Floristic diversity and carbon stocks in the periphery of Deng–Deng National Park, eastern Cameroon. Journal of Forestry Research 31 (3):989–1003. doi:10.1007/s11676-018-0839-7.
  • Kanagaraj, S., M. Rathinam, M. K. Ramkumar, R. Sreevathsa, and G. Munisamy. 2023. Comparative assessment of leaf photosynthetic traits for improved carbon dioxide fixation in selected tree species of pachamalai hills. Brazilian Journal of Botany 46 (1):1–14. doi:10.1007/s40415-022-00855-8.
  • Kaushal, S., and R. Baishya. 2021. Stand structure and species diversity regulate biomass carbon stock under major central Himalayan forest types of India. Ecological Processes 10 (1):14. doi:10.1186/s13717-021-00283-8.
  • Kindt, R., I. Dawson, J.-P. Lillesø, A. Muchugi, F. Pedercini, J. Roshetko, M. van Noordwijk, L. Graudal, and R. Jamnadass. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. doi:10.5716/WP21001.PDF.
  • Labata, M., E. Aranico, A. Tabaranza, P. Patricio, and R. Amparado. 2012. Carbon stock assessment of three selected agroforestry systems in Bukidnon, Philippines. Environmental Sciences International Journal of the Bioflux Society 4 (1):5–11.
  • Lara-Res´endiz, R. A., P. Galina-Tessaro, B. Sinervo, D. B. Miles, J. H. Valdez-Villavicencio, F. I. Valle-Jim´enez, and F. R. M´endez-de La Cruz. 2021. How will climate change impact fossorial lizard species? Two examples in the Baja California Peninsula. Journal of Thermal Biology 95:102811. doi:10.1016/j.jtherbio.2020.102811.
  • Lenka, S., N. K. Lenka, V. Sejian, and M. Mohanty. 2015. Contribution of agriculture sector to climate change. Climate Change Impact on Livestock: Adaptation and Mitigation. doi:10.1007/978-81-322-2265-1_3.
  • Lin, Y., Y. Jin, and H. Jin. 2022. Effects of different exercise types on outdoor thermal comfort in a severe cold city. Journal of Thermal Biology 109:103330. doi:10.1016/j.jtherbio.2022.103330.
  • Liu, X., S. Trogisch, J. S. He, P. A. Niklaus, H. Bruelheide, Z. Tang, A. Erfmeier, M. Scherer-Lorenzen, K. A. Pietsch, B. Yang, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences 285 (1885):20181240. doi:10.1098/rspb.2018.1240.
  • Ma, Z., H. Y. Chen, E. W. Bork, C. N. Carlyle, S. X. Chang, and J. Fortin. 2020. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob Ecol Biogeogr 29 (10):1817–28. doi:10.1111/geb.13145.
  • MAE (Ministerio del Ambiente de Ecuador). (2018). Estadísticas del Patrimonio Natural del Ecuador continental. Subsecretaría de Patrimonio Natural. Ministerio del Ambiente de Ecuador. Quito, Ecuador. https://mluisforestal.files.wordpress.com/2016/01/estadisticas-patrimonio-natural-mae.pdf
  • Murniati, M., S. Suharti, I. Yeny, and M. Minarningsih. 2022. Cacao-based agroforestry in conservation forest area: farmer participation, main commodities and its Contribution to the local production and economy. Forest and Society 6 (1):243–74. doi:10.24259/fs.v6i1.13991.
  • Nair, P. K. R. 2011. Agroforestry systems and environmental quality: Introduction. Journal of Environmental Quality 40 (3):784–90. doi:10.2134/jeq2011.0076.
  • Nakakaawa, C., J. Aune, and P. Vedeld. 2010. Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: What role for carbon sequestration payments? New Forests 40 (1):19–44. doi:10.1007/s11056-009-9180-5.
  • Nelson, J. A., K. J. Rieger, D. Gruber, M. Cutler, B. Buckner, and C. E. Oufiero. 2021. Thermal tolerance of cyprinids along an urban-rural gradient: Plasticity, repeatability and effects of swimming and temperature shock. Journal of Thermal Biology 100:103047. doi:10.1016/j.jtherbio.2021.103047.
  • Ntawuruhunga, D., E. E. Ngowi, H. O. Mangi, R. J. Salanga, and K. M. Shikuku. 2023. Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn’t work, and why. Forest Policy and Economics 150:102937. doi:10.1016/j.forpol.2023.102937.
  • Nzeyimana, I., A. E. Hartemink, and J. de Graaff. 2013. Coffee farming and soil management in Rwanda. Outlook on Agriculture 42 (1):47–52. doi:10.5367/oa.2013.0118.
  • Octavia, D., S. Suharti, D. Murniati, I. W. S. Nugroho, H. Y. S. H. Supriyanto, B. Rohadi, D. Njurumana, G. N. Yeny, I. Hani, A. Mindawati, et al. 2022. Mainstreaming smart agroforestry for social Forestry implementation to support sustainable Development goals in Indonesia: A review. Sustainability 14 (15):9313. doi:10.3390/su14159313.
  • Ortiz-Ceballos, G. C., M. Vargas-Mendoza, A. I. Ortiz-Ceballos, M. M. Briseño, and G. Ortiz-Hernández. 2020. Aboveground carbon storage in coffee agroecosystems: The case of the central region of the state of veracruz in Mexico. Agronomy 10 (3):382. doi:10.3390/agronomy10030382.
  • Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, et al. (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environmental Strategies. ISBN 4-88788-003-0. https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf
  • Pinoargote, M., R. Cerda, L. Mercado, A. Aguilar, M. Barrios, and E. Somarriba. 2017. Carbon stocks, net cash flow and family benefits from four small coffee plantation types in Nicaragua. Forests, Trees and Livelihoods 26 (3):183–98. doi:10.1080/14728028.2016.1268544.
  • Poorter, L., M. T. van der Sande, J. Thompson, E. J. M. M. Arets, A. Alarcón, J. Álvarez-Sánchez, N. Ascarrunz, P. Balvanera, G. Barajas-Guzmán, A. Boit, et al. 2015. Carbon storage in tropical forests. Global Ecology & Biogeography 24 (11):1314–28. doi:10.1111/geb.12364.
  • Potts, L. J., J. D. Gantz, Y. Kawarasaki, B. N. Philip, D. J. Gonthier, A. D. Law, L. Moe, J. M. Unrine, R. L. McCulley, R. E. Lee, et al. 2020. Environmental factors influencing fine-scale distribution of Antarctica’s only endemic insect. Oecologia 194 (4):529–39. doi:10.1007/s00442-020-04714-9.
  • Rigal, C., J. Xu, and P. Vaast. 2020. Young shade trees improve soil quality in intensively managed coffee systems recently converted to agroforestry in Yunnan province, China. Plant and Soil 453 (1–2). doi: 10.1007/s11104-019-04004-1.
  • Salas-Macías, C. A., J. C. Alegre Orihuela, and S. Iglesias Abad. 2017. Estimation of above-ground live biomass and carbon stocks in different plant formations and in the soil of dry forests of the Ecuadorian coast. Food and Energy Security 6 (4):e00115. doi:10.1002/fes3.115.
  • Salas, C., K. Montes, G. Sánchez, W. Alcívar, A. Murillo, F. Vera, D. Bolcato, and S. Iglesias-Abad. 2020. Influencia del gradiente altitudinal sobre la estimación del carbono almacenado en biomasa aérea viva y en suelos del “Bosque y vegetación protector El Artesan-EcuadorianHands”. Joa, Jipijapa. Revista Ecosistemas 29 (2). doi:10.7818/ECOS.1973.
  • Schroth, G., and J. A. McNeely. 2011. Biodiversity conservation, ecosystem services and livelihoods in tropical landscapes: Towards a common agenda. Environmental Management 48 (2):229–36. doi:10.1007/s00267-011-9708-2.
  • Segura, M., M. Kanninen, and D. Suárez. 2006. Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforest Syst 68 (2):143–50. doi:10.1007/s10457-006-9005-x.
  • Sevik, H., M. Cetin, H. B. Ozel, A. Erbek, and I. Z. Cetin. 2021. The effect of climate on leaf micromorphological characteristics in some broad-leaved species. Environment Development and Sustainability 234 (4):6395–407. doi:10.1007/s10668-020-00877-w.
  • Shi, L., W. Feng, J. Xu, and Y. Kuzyakov. 2018. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degradation & Development 29 (11):3886–97. doi:10.1002/ldr.3136.
  • Singh, H., P. V. V. Prasad, B. K. Northup, I. A. Ciampitti, and C. W. Rice. 2022. Strategies for mitigating greenhouse gas emissions from Agricultural Ecosystems. In Global agricultural production: Resilience to climate change, ed. M. Ahmed, 409–40. Springer International Publishing. doi:10.1007/978-3-031-14973-3_16.
  • Suganthi, K., K. Rajiv Das, M. Selvaraj, S. Kurinji, M. Goel, and M. Govindaraju. 2017. Assessment of altitudinal mediated changes of CO2 sequestration by trees at pachamalai reserve forest, Tamil Nadu, India. In Carbon utilization: Applications for the energy industry, ed. M. Goel and M. Sudhakar, 89–99. Springer Singapore. doi:10.1007/978-981-10-3352-0_7.
  • Tashi, S., B. Singh, C. Keitel, and M. Adams. 2016. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology 22 (6):2255–68. doi:10.1111/gcb.13234.
  • Villardón, M. P. G. 1986. Una alternativa de representacion simultanea: HJ-Biplot. Qüestiió: Quaderns d’estadística i Investigació Operativa 10 (1):13–23.
  • Villarreyna, R. A., J. Avelino, and R. Cerda. 2020. Adaptación basada en ecosistemas: efecto de los árboles de sombra sobre servicios ecosistémicos en cafetales. Agronomía Mesoamericana. doi:10.15517/am.v31i2.37591.
  • Wirasatriya, A., R. Pribadi, S. B. Iryanthony, L. Maslukah, D. N. Sugianto, M. Helmi, R. R. Ananta, N. S. Adi, T. L. Kepel, R. N. A. Ati, et al. 2022. Mangrove above-ground biomass and carbon stock in the Karimunjawa-Kemujan Islands estimated from unmanned aerial vehicle-imagery. Sustainability 14 (2):706. doi:10.3390/su14020706.
  • Yasin, G., M. F. Nawaz, M. T. B. Yousaf, S. Gul, I. Qadir, N. K. Niazi, and M. A. Sabir. 2020. Carbon stock and CO2 sequestration rate in linearly planted vachellia nilotica farm trees. Pakistan Journal of Agricultural Sciences 57 (3):807–814. doi:10.21162/PAKJAS/20.9020.
  • Yasin, G., M. F. Nawaz, M. Zubair, M. F. Azhar, M. Mohsin Gilani, M. N. Ashraf, A. Qin, and S. Ur Rahman. 2023. Role of traditional agroforestry systems in climate change mitigation through carbon sequestration: An investigation from the semi-arid region of Pakistan. Land 12 (2):513. doi:10.3390/land12020513.
  • Yigit, N., M. Cetin, A. Ozturk, H. Sevik, and S. Cetin. 2019. Varitation of stomatal characteristics in broad leaved species based on habitat. Applied Ecology and Environmental Sciences 176 (6):12859–68. doi:10.15666/aeer/1706_1285912868.
  • Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, G. Swenson, M. C. Wiemann, and J. Chave. 2009. Data from: Towards a worldwide wood economics spectrum, dryad, dataset. doi:10.5061/dryad.234.
  • Zaro, G. C., P. H. Caramori, G. M. Yada Junior, C. R. Sanquetta, A. A. Filho, A. L. P. Nunes, C. E. C. Prete, and P. Voroney. 2020. Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agrofor Syst 94 (3):799–809. doi:10.1007/s10457-019-00450-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.