1,282
Views
16
CrossRef citations to date
0
Altmetric
Extra View

Commensal bacterial internalization by epithelial cells: An alternative portal for gut leakiness

Article: e1008895 | Received 03 Dec 2014, Accepted 14 Jan 2015, Published online: 17 Mar 2015

References

  • Yu LC, Wang JT, Wei SC, Ni YH. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest Pathophysiol 2012; 3:27-43; PMID:22368784; http://dx.doi.org/10.4291/wjgp.v3.i1.27
  • Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 2007; 22:464-71; PMID:17376034; http://dx.doi.org/10.1111/j.1440-1746.2007.04933.x
  • Leaphart CL, Tepas JJ, III. The gut is a motor of organ system dysfunction. Surgery 2007; 141:563-9; PMID:17462455; http://dx.doi.org/10.1016/j.surg.2007.01.021
  • Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Dechelotte P, Bonnet R, Pezet D, Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014; 20:859-67; PMID:24334760; http://dx.doi.org/10.1158/1078-0432.CCR-13-1343
  • Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, Knight P, Codling C, Marchesi JR, Winstanley C, et al. Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 2014; 63:761-70; PMID:23846483; http://dx.doi.org/10.1136/gutjnl-2013-304739
  • Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 2004; 127:80-93; PMID:15236175; http://dx.doi.org/10.1053/j.gastro.2004.03.054
  • Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 2002; 122:44-54; PMID:11781279; http://dx.doi.org/10.1053/gast.2002.30294
  • Kleessen B, Kroesen AJ, Buhr HJ, Blaut M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 2002; 37:10034-41; PMID:12374228; http://dx.doi.org/10.1080/003655202320378220
  • Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 2004; 99:894-904; PMID:15128357; http://dx.doi.org/10.1111/j.1572-0241.2004.04157.x
  • Sjöberg V, Sandström O, Hedberg M, Hammarström S, Hernell O, Hammarström ML. Intestinal T-cell responses in celiac disease - impact of celiac disease associated bacteria. PLoS One 2013; 8:e53414; PMID:23326425; http://dx.doi.org/10.1371/journal.pone.0053414
  • Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 2007; 56:1522-8; PMID:17339238; http://dx.doi.org/10.1136/gut.2006.117176
  • Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, Perdue MH. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002; 123:1099-108; PMID:12360472; http://dx.doi.org/10.1053/gast.2002.36019
  • Engel DR, Koscielny A, Wehner S, Maurer J, Schiwon M, Franken L, Schumak B, Limmer A, Sparwasser T, Hirner A, et al. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat Med 2010 16:1407-13; PMID:21113155; http://dx.doi.org/10.1038/nm.2255
  • Samel S, Keese M, Kleczka M, Lanig S, Gretz N, Hafner M, Sturm J, Post S. Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo - a new animal model. BMC Surgery 2002; 2:6; PMID:12174194; http://dx.doi.org/10.1186/1471-2482-2-6
  • Wu LL, Peng WH, Kuo WT, Huang CY, Ni YH, Lu KS, Turner JR, Yu LC. Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am J Pathol 2014; 184:2260-74; PMID:24911373; http://dx.doi.org/10.1016/j.ajpath.2014.05.003
  • Yu LC, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR, Ni YH. Enteric dysbiosis promotes antibiotic-resistant bacterial infection: systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G824-35; PMID:25059827; http://dx.doi.org/10.1152/ajpgi.00070.2014
  • Chassaing B, Gewirtz AT. Pathobiont hypnotises enterocytes to promote tumour development. Gut 2014; 63:1837-8; PMID:24780742
  • Kahrstrom CT. Bacterial pathogenesis: E. coli claims the driving seat for cancer. Nat Rev Microbiol 2012; 10:670; PMID:22926206
  • Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am J Pathol 2006; 169:1901-9; PMID:17148655; http://dx.doi.org/10.2353/ajpath.2006.060681
  • Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 2006; 119:2095-106; PMID:16638813; http://dx.doi.org/10.1242/jcs.02915
  • Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 2005; 19:923-33; PMID:15923402; http://dx.doi.org/10.1096/fj.04-3260com
  • Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 2005; 16:5040-52; PMID:16055505; http://dx.doi.org/10.1091/mbc.E05-03-0193
  • Ivanov AI, Samarin SN, Bachar M, Parkos CA, Nusrat A. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol 2009; 10:36; PMID:19422706; http://dx.doi.org/10.1186/1471-2121-10-36
  • Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59; PMID:22782113
  • Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 2010; 177:512-24; PMID:20581053; http://dx.doi.org/10.2353/ajpath.2010.100168
  • Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1beta modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. J Immunol 2013; 190:6596-606; PMID:23656735; http://dx.doi.org/10.4049/jimmunol.1201876
  • Salzman AL, Menconi MJ, Unno N, Ezzell RM, Casey DM, Gonzalez PK, Fink MP. Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am J Physiol Gastrointestinal Liver Physiol 1995; 268:G361-G73; PMID:7864133
  • Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1060-G9; PMID:18292183; http://dx.doi.org/10.1152/ajpgi.00202.2007
  • Wu LL, Chiu HD, Peng WH, Lin BR, Lu KS, Lu YZ, Yu LCH. Epithelial inducible nitric oxide synthase causes bacterial translocation by impairment of enterocytic tight junctions via intracellular signals of Rho-associated kinase and protein kinase C zeta. Crit Care Med 2011; 39:2087-98; PMID:21552122; http://dx.doi.org/10.1097/CCM.0b013e31821cb40e
  • Shifrin D, McConnell R, Nambiar R, Higginbotham J, Coffey R, Tyska M. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 2012; 22:627-31; PMID:22386311; http://dx.doi.org/10.1016/j.cub.2012.02.022
  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS. Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 2005; 16:2443-57; PMID:15758024; http://dx.doi.org/10.1091/mbc.E04-12-1116
  • Danielsen EM, Hansen GH. Lipid rafts in epithelial brush borders: atypical membrane microdomains with specialized functions. Biochim Biophys Acta 2003; 1617:1-9; PMID:14637014; http://dx.doi.org/10.1016/j.bbamem.2003.09.005
  • Peterson MD, Mooseker MS. Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 1992; 102 ( Pt 3):581-600; PMID:1506435
  • Hansen GH, Pedersen J, Niels-Christiansen LL, Immerdal L, Danielsen EM. Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes. Biochem J 2003; 373:125-32; PMID:12689332; http://dx.doi.org/10.1042/BJ20030235
  • Field FJ, Born E, Murthy S, Mathur SN. Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res 1998; 39:1938-50; PMID:9788240
  • Christiansen K, Carlsen J. Microvillus membrane vesicles from pig small intestine. Purity and lipid composition. Biochim Biophys Acta 1981; 647:188-95; PMID:6170331; http://dx.doi.org/10.1016/0005-2736(81)90245-5
  • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:533-44; PMID:1531449; http://dx.doi.org/10.1016/0092-8674(92)90189-J
  • Clark E, Hoare C, Tanianis-Hughes J, Carlson GL, Warhurst G. Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology 2005; 128:1258-67; PMID:15887109; http://dx.doi.org/10.1053/j.gastro.2005.01.046
  • Smyth D, McKay CM, Gulbransen BD, Phan VC, Wang A, McKay DM. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell Microbiol 2012; 14:1257-70; PMID:22463716; http://dx.doi.org/10.1111/j.1462-5822.2012.01796.x
  • Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 2010; 16:1138-48; PMID:20024905; http://dx.doi.org/10.1002/ibd.21177
  • Wang A, Keita AV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, et al. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol 2014; 184:2516-27; PMID:25034594; http://dx.doi.org/10.1016/j.ajpath.2014.05.019
  • Wells CL, VandeWesterlo EM, Jechorek RP, Erlandsen SL. Effect of hypoxia on enterocyte endocytosis of enteric bacteria. Crit Care Med 1996; 24:985-91; PMID:8681603; http://dx.doi.org/10.1097/00003246-199606000-00019
  • Wang G, Moniri NH, Ozawa K, Stamler JS, Daaka Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci USA 2006; 103:1295-300; PMID:16432212
  • Chen TL, Chen S, Wu HW, Lee TC, Lu YZ, Wu LL, Ni YH, Sun CH, Yu WH, Buret AG, et al. Persistent gut barrier damage and commensal bacterial influx following eradication of Giardia infection in mice. Gut Pathog 2013; 5:26; PMID:23991642; http://dx.doi.org/10.1186/1757-4749-5-26
  • Kalischuk L, Inglis GD, Buret A. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog 2009; 1:2; PMID:19338680
  • Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010; 2:14; PMID:21040540; http://dx.doi.org/10.1186/1757-4749-2-14
  • Scott KG, Yu LCH, Buret AG. Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun 2004; 72:3536-42; PMID:15155662; http://dx.doi.org/10.1128/IAI.72.6.3536-3542.2004
  • Yu LCH, Huang CY, Kuo WT, Sayer H, Turner JR, Buret AG. SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 2008; 38:923-34; PMID:18281046; http://dx.doi.org/10.1016/j.ijpara.2007.12.004
  • Watson RO, Galan JE. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog 2008; 4:e14; PMID:18225954
  • Tosi T, Pflug A, Discola KF, Neves D, Dessen A. Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19; PMID:23541478; http://dx.doi.org/10.1016/j.resmic.2013.03.019
  • Keller TC, III, Conzelman KA, Chasan R, Mooseker MS. Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol 1985; 100:1647-55; PMID:3988804; http://dx.doi.org/10.1083/jcb.100.5.1647
  • Keller TC, III, Mooseker MS. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J Cell Biol 1982; 95:943-59; PMID:6897550; http://dx.doi.org/10.1083/jcb.95.3.943
  • Di Paolo MC, Merrett MN, Crotty B, Jewell DP. 5-Aminosalicylic acid inhibits the impaired epithelial barrier function induced by gamma interferon. Gut 1996; 38:115-9; PMID:8566837; http://dx.doi.org/10.1136/gut.38.1.115
  • Eun CS, Kim YS, Han DS, Choi JH, Lee AR, Park YK. Lactobacillus casei prevents impaired barrier function in intestinal epithelial cells. APMIS 2011; 119:49-56; PMID:21143526; http://dx.doi.org/10.1111/j.1600-0463.2010.02691.x
  • Donato RP, El-Merhibi A, Gundsambuu B, Mak KY, Formosa ER, Wang X, Abbott CA, Powell BC. Studying permeability in a commonly used epithelial cell line: T84 intestinal epithelial cells. Methods Mol Biol 2011; 763:115-37; PMID:21874448; http://dx.doi.org/10.1007/978-1-61779-191-8_8
  • Smyth D, Phan V, Wang A, McKay DM. Interferon-gamma-induced increases in intestinal epithelial macromolecular permeability requires the Src kinase Fyn. Lab Invest 2011; 91:764-77; PMID:21321534; http://dx.doi.org/10.1038/labinvest.2010.208
  • Wu CC, Lu YZ, Wu LL, Yu LCH. Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol 2010; 10:39-50; PMID:20403206; http://dx.doi.org/10.1186/1471-230X-10-39
  • Nasa P, Juneja D, Singh O, Dang R, Singh A. An observational study on bloodstream extended-spectrum beta-lactamase infection in critical care unit: incidence, risk factors and its impact on outcome. Eur J Intern Med 2012; 23:192-5; PMID:22284253; http://dx.doi.org/10.1016/j.ejim.2011.06.016
  • Fratila OC, Craciun C. Ultrastructural evidence of mucosal healing after infliximab in patients with ulcerative colitis. J Gastrointestinal Liver Dis 2010; 19:147-53; PMID:20593047
  • Shields HM, Bates ML, Goldman H, Zuckerman GR, Mills BA, Best CJ, Bair FA, Goran DA, DeSchryver-Kecskemeti K. Scanning electron microscopic appearance of chronic ulcerative colitis with and without dysplasia. Gastroenterology 1985; 89:62-72; PMID:4007414
  • Iancu TC, Manov I. Ultrastructural aspects of enterocyte defects in infancy and childhood. Ultrastruct Pathol 2010; 34:117-25; PMID:20455660; http://dx.doi.org/10.3109/01913121003648410
  • Mones RL, Yankah A, Duelfer D, Bustami R, Mercer G. Disaccharidase deficiency in pediatric patients with celiac disease and intact villi. Scand J Gastroenterol 2011; 46:1429-34; PMID:21936724; http://dx.doi.org/10.3109/00365521.2011.619276
  • Le Bouguenec C. Adhesins and invasins of pathogenic Escherichia coli. Int J Med Microbiol 2005; 295:471-8; PMID:16238021; http://dx.doi.org/10.1016/j.ijmm.2005.07.001
  • Ayres JS, Trinidad NJ, Vance RE. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat Med 2012; 18:799-806; PMID:22522562; http://dx.doi.org/10.1038/nm.2729
  • Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallee A, Dechelotte P, Darcha C, Pezet D, Bonnet R, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014; 20:6560-72; PMID:24914378; http://dx.doi.org/10.3748/wjg.v20.i21.6560
  • Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338:120-3; PMID:22903521; http://dx.doi.org/10.1126/science.1224820
  • Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Dechelotte P, Bonnet M, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014; 63:1932-42; PMID:24658599; http://dx.doi.org/10.1136/gutjnl-2013-305257
  • Richmond AL, Kabi A, Homer CR, Marina-Garcia N, Nickerson KP, Nesvizhskii AI, Sreekumar A, Chinnaiyan AM, Nunez G, McDonald C. The nucleotide synthesis enzyme CAD inhibits NOD2 antibacterial function in human intestinal epithelial cells. Gastroenterology 2012; 142:1483-92 e6; PMID:22387394; http://dx.doi.org/10.1053/j.gastro.2012.02.040
  • Kim JG, Lee SJ, Kagnoff MF. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun 2004; 72:1487-95; PMID:14977954; http://dx.doi.org/10.1128/IAI.72.3.1487-1495.2004
  • Laroui H, Yan Y, Narui Y, Ingersoll SA, Ayyadurai S, Charania MA, Zhou F, Wang B, Salaita K, Sitaraman SV, et al. L-Ala-gamma-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J Biol Chem 2011; 286:31003-13; PMID:21757725; http://dx.doi.org/10.1074/jbc.M111.257501
  • Nakamura N, Lill JR, Phung Q, Jiang Z, Bakalarski C, de Maziere A, Klumperman J, Schlatter M, Delamarre L, Mellman I. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 2014; 509:240-4; PMID:24695226; http://dx.doi.org/10.1038/nature13133
  • Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, Thomas BJ, Malosse C, Gantier MP, Casillas LN, et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 2014; 15:623-35; PMID:24746552; http://dx.doi.org/10.1016/j.chom.2014.04.001
  • Corcionivoschi N, Alvarez LA, Sharp TH, Strengert M, Alemka A, Mantell J, Verkade P, Knaus UG, Bourke B. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 2012; 12:47-59; PMID:22817987; http://dx.doi.org/10.1016/j.chom.2012.05.018
  • Resta-Lenert S, Barrett KE. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 2002; 122:1070-87; PMID:11910358; http://dx.doi.org/10.1053/gast.2002.32372
  • Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 2009; 122:3522-30; PMID:19759286; http://dx.doi.org/10.1242/jcs.050690

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.