4,979
Views
155
CrossRef citations to date
0
Altmetric
Review

Tight junction modulation of the blood brain barrier: CNS delivery of small molecules

&
Article: e1138017 | Received 10 Nov 2015, Accepted 24 Dec 2015, Published online: 21 Feb 2016

References

  • Nowakowski RS. Stable neuron numbers from cradle to grave. Proc Natl Acad Sci U S A 2006; 103:12219-20; PMID:16894140; http://dx.doi.org/10.1073/pnas.0605605103
  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13-25; PMID:19664713; http://dx.doi.org/10.1016/j.nbd.2009.07.030
  • Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol 2012; 3:46; PMID:22479246; http://dx.doi.org/10.3389/fphar.2012.00046
  • Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvascular Res 1999; 58:312-28; http://dx.doi.org/10.1006/mvre.1999.2188
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7:41-53; PMID:16371949; http://dx.doi.org/10.1038/nrn1824
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. Neurorx 2005; 2:3-14; PMID:15717053; http://dx.doi.org/10.1602/neurorx.2.1.3
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173-85; PMID:15914466; http://dx.doi.org/10.1124/pr.57.2.4
  • Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev 1985; 65:101-48;PMID:3880896
  • Gingrich MB, Traynelis SF. Serine proteases and brain damage - is there a link? Trends Neurosci 2000; 23:399-407; PMID:10941185; http://dx.doi.org/10.1016/S0166-2236(00)01617-9
  • Pardridge WM. Transport of nutrients and hormones through the blood-brain barrier. Diabetologia 1981; 20:246-54; PMID:7014323; http://dx.doi.org/10.1007/BF00254490
  • Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 2015; 18:521-30; PMID:25730668; http://dx.doi.org/10.1038/nn.3966
  • Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014; 509:503-6; PMID:24828044; http://dx.doi.org/10.1038/nature13241
  • Boado RJ, Pardridge WM. Comparison of blood-brain barrier transport of glial-derived neurotrophic factor (GDNF) and an IgG-GDNF fusion protein in the rhesus monkey. Drug Metab Disposition 2009; 37:2299-304; http://dx.doi.org/10.1124/dmd.109.028787
  • Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002; 1:131-9; PMID:12120094; http://dx.doi.org/10.1038/nrd725
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Controlled Release 2012; 161:264-73; http://dx.doi.org/10.1016/j.jconrel.2011.08.017
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharmaceutics Biopharmaceutics 2009; 71:251-6; http://dx.doi.org/10.1016/j.ejpb.2008.08.021
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascular Pharmacol 2002; 38:323-37; http://dx.doi.org/10.1016/S1537-1891(02)00200-8
  • Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2:285-93; PMID:11283726; http://dx.doi.org/10.1038/35067088
  • Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica Et Biophys Acta 2008; 1778:660-9; http://dx.doi.org/10.1016/j.bbamem.2007.07.012
  • Fanning AS, Little BP, Rahner C, Utepbergenov D, Walther Z, Anderson JM. The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell 2007; 18:721-31; PMID:17182847; http://dx.doi.org/10.1091/mbc.E06-08-0764
  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 1998; 273:29745-53; PMID:9792688; http://dx.doi.org/10.1074/jbc.273.45.29745
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 2005; 171:939-45; PMID:16365161; http://dx.doi.org/10.1083/jcb.200510043
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123:1777-88; PMID:8276896; http://dx.doi.org/10.1083/jcb.123.6.1777
  • Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S, Tsukita S. Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci 1996; 109(Pt 2):429-35; PMID:8838666
  • Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 1996; 134:1031-49; PMID:8769425; http://dx.doi.org/10.1083/jcb.134.4.1031
  • Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 1998; 141:397-408; PMID:9548718; http://dx.doi.org/10.1083/jcb.141.2.397
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11:4131-42; PMID:11102513; http://dx.doi.org/10.1091/mbc.11.12.4131
  • Cummins PM. Occludin: one protein, many forms. Mol Cell Biol 2012; 32:242-50; PMID:22083955; http://dx.doi.org/10.1128/MCB.06029-11
  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM. Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neurosci 2007; 147:664-73; http://dx.doi.org/10.1016/j.neuroscience.2007.04.051
  • Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxi Redox Signal 2011; 15:1195-219; http://dx.doi.org/10.1089/ars.2010.3542
  • Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, Tamura A, Igarashi M, Endo T, Takeuchi K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011; 585:606-12; PMID:21276448; http://dx.doi.org/10.1016/j.febslet.2011.01.028
  • Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 1999; 96:511-6
  • Krause G, Winkler L, Piehl C, Blasig I, Piontek J, Muller SL. Structure and function of extracellular claudin domains. Ann New York Acad Sci 2009; 1165:34-43; http://dx.doi.org/10.1111/j.1749-6632.2009.04057.x
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochimica Et Biophys Acta 2008; 1778:631-45; http://dx.doi.org/10.1016/j.bbamem.2007.10.018
  • Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PloS One 2010; 5:e13741; PMID:21060791; http://dx.doi.org/10.1371/journal.pone.0013741
  • Wen H, Watry DD, Marcondes MC, Fox HS. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 2004; 24:8408-17; PMID:15367662; http://dx.doi.org/10.1128/MCB.24.19.8408-8417.2004
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653-60; PMID:12743111; http://dx.doi.org/10.1083/jcb.200302070
  • Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev 2013; 93:525-69; PMID:23589827; http://dx.doi.org/10.1152/physrev.00019.2012
  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142:117-27; PMID:9660867; http://dx.doi.org/10.1083/jcb.142.1.117
  • Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275:27979-88; PMID:10856295
  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 2000; 275:20520-6; PMID:10877843; http://dx.doi.org/10.1074/jbc.M905251199
  • Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 2007; 7:467-77; PMID:17525755; http://dx.doi.org/10.1038/nri2096
  • Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001; 154:491-7; PMID:11489913; http://dx.doi.org/10.1083/jcb.200103047
  • Aurrand-Lions M, Lamagna C, Dangerfield JP, Wang S, Herrera P, Nourshargh S, Imhof BA. Junctional adhesion molecule-C regulates the early influx of leukocytes into tissues during inflammation. J Immunol 2005; 174:6406-15; PMID:15879142; http://dx.doi.org/10.4049/jimmunol.174.10.6406
  • Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA. JAM family and related proteins in leukocyte migration (Vestweber series). Arteriosclerosis Thrombosis Vascular Biol 2007; 27:2104-12; http://dx.doi.org/10.1161/ATVBAHA.107.147694
  • Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 2015; 208:821-38; PMID:25753039; http://dx.doi.org/10.1083/jcb.201404140
  • Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990; 429:47-62; PMID:2277354; http://dx.doi.org/10.1113/jphysiol.1990.sp018243
  • Bouldin TW, Krigman MR. Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res 1975; 99:444-8; PMID:1182566; http://dx.doi.org/10.1016/0006-8993(75)90053-0
  • van Meer G, Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 1986; 5:1455-64; PMID:3743548
  • Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium. J Immunol 2010; 185:4846-55; PMID:20861356; http://dx.doi.org/10.4049/jimmunol.0903732
  • Banks WA. The CNS as a target for peptides and peptide-based drugs. Exp Opin Drug Delivery 2006; 3:707-12; http://dx.doi.org/10.1517/17425247.3.6.707
  • Lindmark T, Soderholm JD, Olaison G, Alvan G, Ocklind G, Artursson P. Mechanism of absorption enhancement in humans after rectal administration of ampicillin in suppositories containing sodium caprate. Pharmaceutical Res 1997; 14:930-5; http://dx.doi.org/10.1023/A:1012112219578
  • Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, Blasig IE. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharmaceutics 2012; 9:2523-33; http://dx.doi.org/10.1021/mp3001414
  • Preston E, Slinn J, Vinokourov I, Stanimirovic D. Graded reversible opening of the rat blood-brain barrier by intracarotid infusion of sodium caprate. J Neurosci Methods 2008; 168:443-9; PMID:18155299; http://dx.doi.org/10.1016/j.jneumeth.2007.11.004
  • Cosolo WC, Martinello P, Louis WJ, Christophidis N. Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am J Physiol 1989; 256:R443-7; PMID:2492773
  • Wakai A, McCabe A, Roberts I, Schierhout G. Mannitol for acute traumatic brain injury. Cochrane Database Syst Rev 2013; 8:Cd001049; PMID:23918314
  • Rapoport SI. Advances in osmotic opening of the blood-brain barrier to enhance CNS chemotherapy. Exp Opin Invest Drugs 2001; 10:1809-18; http://dx.doi.org/10.1517/13543784.10.10.1809
  • Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, Rasmussen P, Mayberg MR, Janigro D. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res 2002; 940:102-4; PMID:12020881; http://dx.doi.org/10.1016/S0006-8993(02)02586-6
  • Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D, Neuwelt EA. Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neuro-oncol 2006; 77:279-84; http://dx.doi.org/10.1007/s11060-005-9038-4
  • Bartus RT, Snodgrass P, Marsh J, Agostino M, Perkins A, Emerich DF. Intravenous cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels, and enhances survival. J Pharmacol Exp Therapeutics 2000; 293:903-11
  • Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, Vezina G, Reaman G, Shaw D, Krailo M, et al. Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children's Oncology Group. Cancer Chemotherapy Pharmacol 2006; 58:343-7; http://dx.doi.org/10.1007/s00280-005-0172-7
  • Hulper P, Veszelka S, Walter FR, Wolburg H, Fallier-Becker P, Piontek J, Blasig IE, Lakomek M, Kugler W, Deli MA. Acute effects of short-chain alkylglycerols on blood-brain barrier properties of cultured brain endothelial cells. Br J Pharmacol 2013; 169:1561-73; PMID:23617601; http://dx.doi.org/10.1111/bph.12218
  • Erdlenbruch B, Alipour M, Fricker G, Miller DS, Kugler W, Eibl H, Lakomek M. Alkylglycerol opening of the blood-brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 2003; 140:1201-10; PMID:14597599; http://dx.doi.org/10.1038/sj.bjp.0705554
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009; 8:129-38; PMID:19180106; http://dx.doi.org/10.1038/nrd2742
  • Hanout M, Ferraz D, Ansari M, Maqsood N, Kherani S, Sepah YJ, Rajagopalan N, Ibrahim M, Do DV, Nguyen QD. Therapies for neovascular age-related macular degeneration: current approaches and pharmacologic agents in development. Biomed Res Int 2013; 2013:830837; PMID:24319688; http://dx.doi.org/10.1155/2013/830837
  • Hino T, Yokota T, Ito S, Nishina K, Kang YS, Mori S, Hori S, Kanda T, Terasaki T, Mizusawa H. In vivo delivery of small interfering RNA targeting brain capillary endothelial cells. Biochem Biophys Res Commun 2006; 340:263-7; PMID:16364250; http://dx.doi.org/10.1016/j.bbrc.2005.11.173
  • Campbell M, Kiang AS, Kenna PF, Kerskens C, Blau C, O'Dwyer L, Tivnan A, Kelly JA, Brankin B, Farrar GJ, et al. RNAi-mediated reversible opening of the blood-brain barrier. J Gene Med 2008; 10:930-47; PMID:18509865; http://dx.doi.org/10.1002/jgm.1211
  • Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, et al. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 2012; 3:849; PMID:22617289; http://dx.doi.org/10.1038/ncomms1852
  • Campbell M, Nguyen AT, Kiang AS, Tam LC, Gobbo OL, Kerskens C, Ni Dhubhghaill S, Humphries MM, Farrar GJ, Kenna PF, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S Am 2009; 106:17817-22; http://dx.doi.org/10.1073/pnas.0908561106
  • Campbell M, Humphries MM, Kiang AS, Nguyen AT, Gobbo OL, Tam LC, Suzuki M, Hanrahan F, Ozaki E, Farrar GJ, et al. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 2011; 3:235-45; PMID:21374818; http://dx.doi.org/10.1002/emmm.201100126
  • Keaney J, Walsh DM, O'Malley T, Hudson N, Crosbie DE, Loftus T, Sheehan F, McDaid J, Humphries MM, Callanan JJ, et al. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci Adv 2015; 1:e1500472; PMID:26491725; http://dx.doi.org/10.1126/sciadv.1500472
  • Aina OH, Sroka TC, Chen ML, Lam KS. Therapeutic cancer targeting peptides. Biopolymers 2002; 66:184-99; PMID:12385037; http://dx.doi.org/10.1002/bip.10257
  • Wong V, Gumbiner BM. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 1997; 136:399-409; PMID:9015310; http://dx.doi.org/10.1083/jcb.136.2.399
  • Tavelin S, Hashimoto K, Malkinson J, Lazorova L, Toth I, Artursson P. A new principle for tight junction modulation based on occludin peptides. Mol Pharmacol 2003; 64:1530-40; PMID:14645684; http://dx.doi.org/10.1124/mol.64.6.1530
  • Mrsny RJ, Brown GT, Gerner-Smidt K, Buret AG, Meddings JB, Quan C, Koval M, Nusrat A. A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am J Pathol 2008; 172:905-15; PMID:18349130; http://dx.doi.org/10.2353/ajpath.2008.070698
  • Staat C, Coisne C, Dabrowski S, Stamatovic SM, Andjelkovic AV, Wolburg H, Engelhardt B, Blasig IE. Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials 2015; 54:9-20; PMID:25907035; http://dx.doi.org/10.1016/j.biomaterials.2015.03.007
  • Karyekar CS, Fasano A, Raje S, Lu R, Dowling TC, Eddington ND. Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharmaceutical Sci 2003; 92:414-23; http://dx.doi.org/10.1002/jps.10310
  • Menon D, Karyekar CS, Fasano A, Lu R, Eddington ND. Enhancement of brain distribution of anticancer agents using DeltaG, the 12 kDa active fragment of ZOT. Int J Pharmaceutics 2005; 306:122-31; http://dx.doi.org/10.1016/j.ijpharm.2005.09.006
  • Fasano A, Fiorentini C, Donelli G, Uzzau S, Kaper JB, Margaretten K, Ding X, Guandalini S, Comstock L, Goldblum SE. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 1995; 96:710-20; PMID:7635964; http://dx.doi.org/10.1172/JCI118114
  • Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dementia 2011; 7:270-9; PMID:21514249; http://dx.doi.org/10.1016/j.jalz.2011.03.008
  • Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PloS One 2011; 6:e23789; PMID:21909359; http://dx.doi.org/10.1371/journal.pone.0023789
  • Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U, Klunemann HH, Schuierer G, et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke; J Cerebral Circulation 2012; 43:514-23; http://dx.doi.org/10.1161/STROKEAHA.111.627562
  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9:907-13; PMID:12808450; http://dx.doi.org/10.1038/nm890
  • Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Abeta(1)(-)(4)(2)-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci 2012; 32:8845-54; PMID:22745485; http://dx.doi.org/10.1523/JNEUROSCI.6102-11.2012
  • Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85:296-302; PMID:25611508; http://dx.doi.org/10.1016/j.neuron.2014.12.032
  • Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, Winkler EA, Ramanathan A, Kanekiyo T, Bu G, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18:978-87; PMID:26005850; http://dx.doi.org/10.1038/nn.4025
  • Pfeiffer F, Schafer J, Lyck R, Makrides V, Brunner S, Schaeren-Wiemers N, Deutsch U, Engelhardt B. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathologica 2011; 122:601-14; PMID:21983942; http://dx.doi.org/10.1007/s00401-011-0883-2
  • Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, van der Pol SM, van Het Hof B, Gollasch M, Drexhage JA, et al. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathologica 2014; 128:267-77; PMID:24356983; http://dx.doi.org/10.1007/s00401-013-1227-1
  • Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem 2011; 286:17536-42; PMID:21471207; http://dx.doi.org/10.1074/jbc.M111.225532
  • Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012; 485:512-6; PMID:22622580; http://dx.doi.org/10.1038/nj7398-407a
  • Song L, Ge S, Pachter JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 2007; 109:1515-23; PMID:17023578; http://dx.doi.org/10.1182/blood-2006-07-034009
  • Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. Neuro Immunomodulation 1995; 2:241-8
  • Xaio H, Banks WA, Niehoff ML, Morley JE. Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res 2001; 896:36-42; PMID:11277970; http://dx.doi.org/10.1016/S0006-8993(00)03247-9
  • Deli MA, Descamps L, Dehouck MP, Cecchelli R, Joo F, Abraham CS, Torpier G. Exposure of tumor necrosis factor-α to luminal membrane of bovine brain capillary endothelial cells cocultured with astrocytes induces a delayed increase of permeability and cytoplasmic stress fiber formation of actin. J Neurosci Res 1995; 41:717-26; PMID:7500373; http://dx.doi.org/10.1002/jnr.490410602
  • Fiala M, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiappelli F, Schweitzer ES, Shapshak P, Weinand M, et al. TNF-α opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Mol Med 1997; 3:553-64; PMID:9307983
  • Wispelwey B, Lesse AJ, Hansen EJ, Scheld WM. Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J Clin Invest 1988; 82:1339-46; PMID:3262627; http://dx.doi.org/10.1172/JCI113736
  • Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 2006; 177:5574-84; PMID:17015745; http://dx.doi.org/10.4049/jimmunol.177.8.5574
  • Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 2012; 122:2454-68; PMID:22653056; http://dx.doi.org/10.1172/JCI60842
  • Ronaldson PT, Demarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP. Transforming growth factor-β signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cerebral Blood Flow Metab 2009; 29:1084-98; http://dx.doi.org/10.1038/jcbfm.2009.32
  • Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxi Redox Signal 2011; 15:1305-23; http://dx.doi.org/10.1089/ars.2011.3923
  • Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PloS One 2011; 6:e20599; PMID:21857898; http://dx.doi.org/10.1371/journal.pone.0020599
  • Miller DH, Thompson AJ, Morrissey SP, MacManus DG, Moore SG, Kendall BE, Moseley IF, McDonald WI. High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry 1992; 55:450-3; PMID:1619410; http://dx.doi.org/10.1136/jnnp.55.6.450
  • Blecharz KG, Haghikia A, Stasiolek M, Kruse N, Drenckhahn D, Gold R, Roewer N, Chan A, Forster CY. Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England) 2010; 16:293-302; PMID:20203147; http://dx.doi.org/10.1177/1352458509358189
  • Siegel JM. Clues to the functions of mammalian sleep. Nature 2005; 437:1264-71; PMID:16251951; http://dx.doi.org/10.1038/nature04285
  • Wolk R, Gami AS, Garcia-Touchard A, Somers VK. Sleep and cardiovascular disease. Curr Problems Cardiol 2005; 30:625-62http://dx.doi.org/10.1016/j.cpcardiol.2005.07.002
  • Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA. Meta-analysis of short sleep duration and obesity in children and adults. Sleep 2008; 31:619-26; PMID:18517032
  • Kawakami N, Takatsuka N, Shimizu H. Sleep disturbance and onset of type 2 diabetes. Diabetes Care 2004; 27:282-3; PMID:14694011; http://dx.doi.org/10.2337/diacare.27.1.282
  • Nutt D, Wilson S, Paterson L. Sleep disorders as core symptoms of depression. Dialogues Clin Neurosci 2008; 10:329-36; PMID:18979946
  • He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W. Sleep restriction impairs blood-brain barrier function. J Neurosci 2014; 34:14697-706; PMID:25355222; http://dx.doi.org/10.1523/JNEUROSCI.2111-14.2014
  • Gomez-Gonzalez B, Hurtado-Alvarado G, Esqueda-Leon E, Santana-Miranda R, Rojas-Zamorano JA, Velazquez-Moctezuma J. REM sleep loss and recovery regulates blood-brain barrier function. Curr Neurovascular Res 2013; 10:197-207; http://dx.doi.org/10.2174/15672026113109990002
  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, et al. Sleep drives metabolite clearance from the adult brain. Sci 2013; 342:373-7; http://dx.doi.org/10.1126/science.1241224
  • Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O'Connor ST, Chin AR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25:501-15; PMID:24735924; http://dx.doi.org/10.1016/j.ccr.2014.03.007
  • Hebert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 2009; 32:199-206; PMID:19268374; http://dx.doi.org/10.1016/j.tins.2008.12.003
  • Junker A, Hohlfeld R, Meinl E. The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol 2011; 7:56-9; PMID:21151203; http://dx.doi.org/10.1038/nrneurol.2010.179
  • Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, Kay O, de Vries HE, Hirst MC, Sharrack B, et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 2014; 28:2551-65; PMID:24604078; http://dx.doi.org/10.1096/fj.13-248880
  • Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G, Vos JB, van der Pouw Kraan TC, van Zonneveld AJ, Horrevoets AJ, et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 2013; 33:6857-63; PMID:23595744; http://dx.doi.org/10.1523/JNEUROSCI.3965-12.2013
  • Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 2004; 30:979-89; PMID:15313330; http://dx.doi.org/10.1016/j.ultrasmedbio.2004.04.010
  • Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 2006; 340:1085-90; PMID:16403441; http://dx.doi.org/10.1016/j.bbrc.2005.12.112
  • Park J, Zhang Y, Vykhodtseva N, Jolesz FA, McDannold NJ. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Controlled Release 2012; 162:134-42; http://dx.doi.org/10.1016/j.jconrel.2012.06.012
  • Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Controlled Release 2012; 163:125-9; http://dx.doi.org/10.1016/j.jconrel.2012.08.012
  • Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Controlled Release 2012; 163:277-84; http://dx.doi.org/10.1016/j.jconrel.2012.09.007
  • Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PloS One 2011; 6:e27877; PMID:22114718; http://dx.doi.org/10.1371/journal.pone.0027877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.