2,029
Views
35
CrossRef citations to date
0
Altmetric
Review

Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

Article: e1159276 | Received 07 Jan 2016, Accepted 23 Feb 2016, Published online: 26 Apr 2016

References

  • Bobardt MD, Chatterji U, Selvarajah S, Van der Schueren B, David G, Kahn B, Gallay PA. Cell-free human immunodeficiency virus type 1 transcytosis through primary genital epithelial cells. J Virol 2007; 81, 395-405; PMID:17050597; http://dx.doi.org/10.1128/JVI.01303-06
  • Howell AL, Asin SN, Yeaman GR, Wira CR HIV-1 infection of the female reproductive tract. Current HIV/AIDS reports 2005; 2, 35-8; PMID:16091247; http://dx.doi.org/10.1007/s11904-996-0007-0
  • Tugizov, SM, Herrera R, Veluppillai P, Greenspan D, Soros V, Greene WC, Levy JA, Palefsky JM. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells. Virology 2011; 409:211-22; PMID:21056450; http://dx.doi.org/10.1016/j.virol.2010.10.004
  • Tugizov, SM, Herrera R, Veluppillai P, Greenspan D, Soros V, Greene WC, Levy JA, Palefsky JM. Differential transmission of HIV traversing fetal oral/intestinal epithelia and adult oral epithelia. J Virol 2012; 86:2556-70; PMID:22205732; http://dx.doi.org/10.1128/JVI.06578-11
  • Dwinell MB, Eckmann L, Leopard JD, Varki NM, Kagnoff MF Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 1999; 117:359-67; PMID:10419917; http://dx.doi.org/10.1053/gast.1999.0029900359
  • Liu X, Zha J, Chen H, Nishitani J, Camargo P, Cole SW, Zack JA. Human immunodeficiency virus type 1 infection and replication in normal human oral keratinocytes. J Virol 2003; 77:3470-6; PMID:12610122; http://dx.doi.org/10.1128/JVI.77.6.3470-3476.2003
  • Herrera R, Morris M, Rosbe K, Feng Z, Weinberg A, Tugizov S. Human beta-defensins 2 and -3 cointernalize with human immunodeficiency virus via heparan sulfate proteoglycans and reduce infectivity of intracellular virions in tonsil epithelial cells. Virology 2015; 487:172-87 ; PMID:26539799; http://dx.doi.org/10.1016/j.virol.2015.09.025
  • Zheng J, Xie Y, Campbell R, Song J, Wang RQ, Chiu R, Berenson J, Razi M, Massachi S, Yang OO, et al. gp120-independent HIV infection of cells derived from the female reproductive tract, brain, and colon. J Acquir Immune Defic Syndr 2006; 43:127-36; PMID:16951651; http://dx.doi.org/10.1097/01.qai.0000228149.17669.08
  • Howell AL, Edkins RD, Rier SE, Yeaman GR, Stern JE, Fanger MW, Wira CR. Human immunodeficiency virus type 1 infection of cells and tissues from the upper and lower human female reproductive tract. J Virol 1997; 71:3498-506; PMID:9094621
  • Micsenyi AM, Zony C, Alvarez RA, Durham ND, Chen BK, Klotman ME. Postintegration HIV-1 infection of cervical epithelial cells mediates contact-dependent productive infection of T cells. J Infect Dis 2013; 208:1756-67; PMID:23908485; http://dx.doi.org/10.1093/infdis/jit362
  • Liu R, Huang L, Li J, Zhou X, Zhang H, Zhang T, Lei Y, Wang K, Xie N, Zheng Y, et al. HIV Infection in gastric epithelial cells. J Infect Dis 2013; 208:1221-30; PMID:23852124; http://dx.doi.org/10.1093/infdis/jit314
  • Vacharaksa A, Asrani AC, Gebhard KH, Fasching CE, Giacaman RA, Janoff EN, Ross KF, Herzberg MC. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells. Retrovirology 2008; 5:66; PMID:18637194; http://dx.doi.org/10.1186/1742-4690-5-66
  • Dezzutti CS, Guenthner PC, Cummins JE Jr, Cabrera T, Marshall JH, Dillberger A, Lal RB. Cervical and prostate primary epithelial cells are not productively infected but sequester human immunodeficiency virus type 1. J Infect Dis 2001; 183:1204-13; PMID:11262202; http://dx.doi.org/10.1086/319676
  • Gupta S, Gach JS, Becerra JC, Phan TB, Pudney J, Moldoveanu Z, Joseph SB, Landucci G, Supnet MJ, Ping LH, et al. The Neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog 2013; 9:e1003776; PMID:24278022; http://dx.doi.org/10.1371/journal.ppat.1003776
  • Bomsel M Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 1997; 3:42-7; PMID:8986739; http://dx.doi.org/10.1038/nm0197-42
  • Meng G, Wei X, Wu X, Sellers MT, Decker JM, Moldoveanu Z, Orenstein JM, Graham MF, Kappes JC, Mestecky J, et al. Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 2002; 8:150-6; PMID:11821899; http://dx.doi.org/10.1038/nm0202-150
  • Kohli A, Islam A, Moyes DL, Murciano C, Shen C, Challacombe SJ, Naglik JR. Oral and vaginal epithelial cell lines bind and transfer cell-free infectious HIV-1 to permissive cells but are not productively infected. PloS One 2014; 9:e98077; PMID:24857971; http://dx.doi.org/10.1371/journal.pone.0098077
  • Kinlock BL, Wang Y, Turner TM, Wang C, Liu B Transcytosis of HIV-1 through vaginal epithelial cells is dependent on trafficking to the endocytic recycling pathway. PloS One 2014; 9:e96760; PMID:24830293; http://dx.doi.org/10.1371/journal.pone.0096760
  • Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, Arsenault AL, Kaushic C. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 2010; 6:e1000852; PMID:20386714; http://dx.doi.org/10.1371/journal.ppat.1000852
  • Carias AM, McCoombe S, McRaven M, Anderson M, Galloway N, Vandergrift N, Fought AJ, Lurain J, Duplantis M, Veazey RS, et al. Defining the interaction of HIV-1 with the mucosal barriers of the female reproductive tract. J Virol 2013; 87:11388-400; PMID: 23966398; http://dx.doi.org/10.1128/JVI.01377-13
  • Dinh, MH, Anderson MR, McRaven MD, Cianci GC, McCoombe SG, Kelley ZL, Gioia CJ, Fought AJ, Rademaker AW, Veazey RS, et al. Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission. PLoS Pathog 2015; 11:e1004729; PMID:25748093; http://dx.doi.org/10.1371/journal.ppat.1004729
  • Maher D, Wu X, Schacker T, Larson M, Southern P A model system of oral HIV exposure, using human palatine tonsil, reveals extensive binding of HIV infectivity, with limited progression to primary infection. J Infect Dis 2004; 190:1989-97; PMID:15529264; http://dx.doi.org/10.1086/425423
  • Izquierdo-Useros N, Lorizate M, McLaren PJ, Telenti A, Kräusslich HG, Martinez-Picado J. HIV-1 capture and transmission by dendritic cells: the role of viral glycolipids and the cellular receptor Siglec-1. PLoS Pathog 2014; 10:e1004146; PMID:25033082; http://dx.doi.org/10.1371/journal.ppat.1004146
  • Sufiawati I, Tugizov SM. HIV-Associated Disruption of Tight and Adherens Junctions of Oral Epithelial Cells Facilitates HSV-1 Infection and Spread. PloS One 2014; 9:e88803; PMID:24586397; http://dx.doi.org/10.1371/journal.pone.0088803
  • Ferreira VH, Nazli A, Dizzell SE, Mueller K, Kaushic C. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PloS One 2015; 10:e0124903; PMID:25856395; http://dx.doi.org/10.1371/journal.pone.0124903
  • Tugizov SM, Herrera R, Chin-Hong P, Veluppillai P, Greenspan D, Michael Berry J, Pilcher CD, Shiboski CH, Jay N, et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology 2013; 446:378-88; PMID: 24074602; http://dx.doi.org/10.1016/j.virol.2013.08.018
  • Schluter H, Wepf R, Moll I, Franke WW Sealing the live part of the skin: the integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis. Eur J Cell Biol 2004; 83:655-65; PMID:15679110; http://dx.doi.org/10.1078/0171-9335-00434
  • Langbein L, Pape UF, Grund C, Kuhn C, Praetzel S, Moll I, Moll R, Franke WW. Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur J Cell Biol 2003; 82:385-400; PMID:14533737; http://dx.doi.org/10.1078/0171-9335-00330
  • Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW. Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 2002; 81:419-35; PMID:12234014; http://dx.doi.org/10.1078/0171-9335-00270
  • Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I. Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 2002; 81:253-63; PMID:12067061; http://dx.doi.org/10.1078/0171-9335-00244
  • Takano, K, Kojima T, Go M, Murata M, Ichimiya S, Himi T, Sawada N. HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 2005; 53:611-9; PMID: 15872054; http://dx.doi.org/10.1369/jhc.4A6539.2005
  • Blaskewicz CD, Pudney J, Anderson DJ Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 2011; 85:97-104; PMID:21471299; http://dx.doi.org/10.1095/biolreprod.110.090423
  • Go, M, Kojima T, Takano K, Murata M, Ichimiya S, Tsubota H, Himi T, Sawada N. Expression and function of tight junctions in the crypt epithelium of human palatine tonsils. J Histochem Cytochem 2004; 52:1627-38; PMID:15557217; http://dx.doi.org/10.1369/jhc.4A6339.2004
  • Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H. Tight junctions and human diseases. Med Electron Microsc 2003; 36:147-56; PMID:14505058; http://dx.doi.org/10.1007/s00795-003-0219-y
  • Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127:2525-32; PMID:17934504; http://dx.doi.org/10.1038/sj.jid.5700865
  • Naik UP, Eckfeld K Junctional adhesion molecule 1 (JAM-1). J Biol Regul Homeost Agents 2003; 17:341-7; PMID:15065765
  • Hartsock A, Nelson WJ Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta 2008; 1778:660-9; PMID:17854762; http://dx.doi.org/10.1016/j.bbamem.2007.07.012
  • Rodriguez-Boulan E, Macara IG Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42; PMID:24651541; http://dx.doi.org/10.1038/nrm3775
  • UNAIDS. Criminalisation of HIV non-disclosure, exposure and transmission: scientific, medical, legal and human right issues. Genewa, Switzeland (2011).
  • Page-Shafer K, Sweet S, Kassaye S, Ssali, C. (C2) Saliva, breast milk, and mucosal fluids in HIV transmission. Adv Dent Res 2006; 19:152-7; PMID:16672566; http://dx.doi.org/10.1177/154407370601900127
  • UNAIDS. Global report on the global AIDS epidemic 2013. (2013).
  • Campo J, Perea MA, del Romero J, Cano J, Hernando V, Bascones A. Oral transmission of HIV, reality or fiction? An update. Oral Dis 2006; 12:219-28; PMID:16700731; http://dx.doi.org/10.1111/j.1601-0825.2005.01187.x
  • Baggaley RF, Dimitrov D, Owen BN, Pickles M, Butler AR, Masse B, Boily MC. Heterosexual anal intercourse: a neglected risk factor for HIV? Am J Reprod Immunol 2013; 69(Suppl 1):95-105; PMID:23279040; http://dx.doi.org/10.1111/aji.12064
  • Nazli A, Kafka JK, Ferreira VH, Anipindi V, Mueller K, Osborne BJ, Dizzell S, Chauvin S, Mian MF, et al. HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 2013; 191:4246-58; PMID:24043886; http://dx.doi.org/10.4049/jimmunol.1301482
  • Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2004; 286:G367-376; PMID:14766535; http://dx.doi.org/10.1152/ajpgi.00173.2003
  • Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 2005; 288:G422-430; PMID: 15701621; http://dx.doi.org/10.1152/ajpgi.00412.2004
  • Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 2006; 290:G496-504; PMID:16474009; http://dx.doi.org/10.1152/ajpgi.00318.2005
  • Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 2003; 171:6164-72; PMID:14634132; http://dx.doi.org/10.4049/jimmunol.171.11.6164
  • Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR 2nd, Raleigh DR, Guan Y, Watson AJ, Montrose MH, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 2010; 189:111-26; PMID:20351069; http://dx.doi.org/10.1083/jcb.200902153
  • Acheampong EA, Parveen Z, Muthoga LW, Wasmuth-Peroud V, Kalayeh M, Bashir A, Diecidue R, Mukhtar M, Pomerantz RJ. Molecular interactions of human immunodeficiency virus type 1 with primary human oral keratinocytes. J Virol 2005; 79:8440-53; PMID:15956588; http://dx.doi.org/10.1128/JVI.79.13.8440-8453.2005
  • Gitter AH, Bendfeldt K, Schmitz H, Schulzke JD, Bentzel CJ, Fromm M. Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann N Y Acad Sci 2000; 915:193-203; PMID:11193576; http://dx.doi.org/10.1111/j.1749-6632.2000.tb05242.x
  • Leone AK, Chun JA, Koehler CL, Caranto J, King JM. Effect of proinflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma on epithelial barrier function and matrix metalloproteinase-9 in Madin Darby canine kidney cells. Cell Physiol Biochem 2007; 19:99-112; PMID:17310104; http://dx.doi.org/10.1159/000099198
  • Huet E, Vallée B, Delbé J, Mourah S, Prulière-Escabasse V, Tremouilleres M, Kadomatsu K, Doan S, Baudouin C, Menashi S, et al. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease. Am J Pathol 2011; 179:1278-86; PMID:21777561; http://dx.doi.org/10.1016/j.ajpath.2011.05.036
  • Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O. The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 2004; 117:2097-107; PMID:15054114; http://dx.doi.org/10.1242/jcs.01071
  • Fanibunda SE, Modi DN, Gokral JS, Bandivdekar AH. HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases. PloS One 2011; 6:e28014; PMID:22132194; http://dx.doi.org/10.1371/journal.pone.0028014
  • Al-Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A, Watterson DM, Ma TY. Mechanism of interleukin-1beta induced-increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res 2012; 32:474-84; PMID: 22817402; http://dx.doi.org/10.1089/jir.2012.0031
  • Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 2014; 9:e85345; PMID:24662742; http://dx.doi.org/10.1371/journal.pone.0085345
  • Schumann M, Kamel S, Pahlitzsch ML, Lebenheim L, May C, Krauss M, Hummel M, Daum S, Fromm M, Schulzke JD. Defective tight junctions in refractory celiac disease. Ann N Y Acad Sci 2012; 1258:43-51; PMID:22731714
  • Saatian B, Rezaee F, Desando S, Emo J, Chapman T, Knowlden S, Georas SN. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 2013; 1:e24333; PMID:24665390; http://dx.doi.org/10.4161/tisb.24333
  • Wang Y, Zhang J, Yi XJ, Yu FS. Activation of ERK1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells. Exp Eye Res 2004; 78:125-36; PMID:14667834; http://dx.doi.org/10.1016/j.exer.2003.09.002
  • Delezay O, Koch N, Yahi N, Hammache D, Tourres C, Tamalet C, Fantini J. Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS 1997; 11:1311-8; PMID:9302439; http://dx.doi.org/10.1097/00002030-199711000-00004
  • Maresca M, Mahfoud R, Garmy N, Kotler DP, Fantini J, Clayton F. The virotoxin model of HIV-1 enteropathy: involvement of GPR15/Bob and galactosylceramide in the cytopathic effects induced by HIV-1 gp120 in the HT-29-D4 intestinal cell line. J Biomed Sci 2003; 10:156-66; PMID:12566994; http://dx.doi.org/10.1007/BF02256007
  • Lee C, Liu QH, Tomkowicz B, Yi Y, Freedman BD, Collman RG. Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signaling pathways. J Leukoc Biol 2003; 74:676-82; PMID:12960231; http://dx.doi.org/10.1189/jlb.0503206
  • Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, Collman RG. HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 2001; 98:2909-16; PMID:11698270; http://dx.doi.org/10.1182/blood.V98.10.2909
  • Dayanithi G, Yahi N, Baghdiguian S, Fantini J Intracellular calcium release induced by human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein in human intestinal epithelial cells: a putative mechanism for HIV-1 enteropathy. Cell Calcium 1995; 18:9-18; PMID:7585886; http://dx.doi.org/10.1016/0143-4160(95)90041-1
  • Bai L, Zhang Z, Zhang H, Li X, Yu Q, Lin H, Yang W. HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study. BMC Infect Dis 2008; 8:77; PMID:18538010; http://dx.doi.org/10.1186/1471-2334-8-77
  • Pu H, Tian J, Andras IE, Hayashi K, Flora G, Hennig B, Toborek M. HIV-1 Tat protein-induced alterations of ZO-1 expression are mediated by redox-regulated ERK 1/2 activation. J Cereb Blood Flow Metab 2005; 25:1325-35; PMID:15829913; http://dx.doi.org/10.1038/sj.jcbfm.9600125
  • Zhong Y, Smart EJ, Weksler B, Couraud PO, Hennig B, Toborek M. Caveolin-1 regulates human immunodeficiency virus-1 Tat-induced alterations of tight junction protein expression via modulation of the Ras signaling. J Neurosci 2008; 28:7788-96; PMID:18667611; http://dx.doi.org/10.1523/JNEUROSCI.0061-08.2008
  • Chen Y, Lu Q, Schneeberger EE, Goodenough DA Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 2000; 11:849-62; PMID:10712504; http://dx.doi.org/10.1091/mbc.11.3.849
  • Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmári E, Traweger A, Wejksza K, Bauer HC. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol 2005; 25:129-39; PMID:15962510; http://dx.doi.org/10.1007/s10571-004-1378-7
  • Wu HL, Gao X, Jiang ZD, Duan ZT, Wang SK, He BS, Zhang ZY, Xie HG. Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation. Toxicology 2013; 304:41-8; PMID:23220562; http://dx.doi.org/10.1016/j.tox.2012.11.020
  • Al-Sadi R, Guo S, Ye D, Ma TY TNF-alpha modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol 2013; 183:1871-84; PMID:24121020; http://dx.doi.org/10.1016/j.ajpath.2013.09.001
  • Nakamuta S, Endo H, Higashi Y, Kousaka A, Yamada H, Yano M, Kido H. Human immunodeficiency virus type 1 gp120-mediated disruption of tight junction proteins by induction of proteasome-mediated degradation of zonula occludens-1 and -2 in human brain microvascular endothelial cells. J Neurovirol 2008; 14:186-95; PMID:18569453; http://dx.doi.org/10.1080/13550280801993630
  • Epple HJ, Allers K, Tröger H, Kühl A, Erben U, Fromm M, Zeitz M, Loddenkemper C, Schulzke JD, Schneider T. Acute HIV infection induces mucosal infiltration with CD4+ and CD8+ T cells, epithelial apoptosis, and a mucosal barrier defect. Gastroenterology 2010; 139:1289-300; PMID:20600014; http://dx.doi.org/10.1053/j.gastro.2010.06.065
  • Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, Amasheh M, Loddenkemper C, Fromm M, Zeitz M, et al. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 2009; 58:220-7; PMID:18936106; http://dx.doi.org/10.1136/gut.2008.150425
  • Assimakopoulos SF, Dimitropoulou D, Marangos, M, Gogos CA. Intestinal barrier dysfunction in HIV infection: pathophysiology, clinical implications and potential therapies. Infection 2014; 42:951-9; PMID: 25070877; http://dx.doi.org/10.1007/s15010-014-0666-5
  • Kapembwa MS, Fleming SC, Orr M, Wells C, Bland M, Back D, Griffin GE. Impaired absorption of zidovudine in patients with AIDS-related small intestinal disease. Aids 1996; 10:1509-14; PMID:8931785; http://dx.doi.org/10.1097/00002030-199611000-00008
  • Obinna FC, Cook G, Beale T, Dave S, Cunningham D, Fleming SC, Claydon E, Harris JW, Kapembwa MS. Comparative assessment of small intestinal and colonic permeability in HIV-infected homosexual men. Aids 1995; 9:1009-16; PMID:8527072; http://dx.doi.org/10.1097/00002030-199509000-00005
  • Kapembwa MS, Fleming SC, Sewankambo N, Serwadda D, Lucas S, Moody A, Griffin GE. Altered small-intestinal permeability associated with diarrhoea in human-immunodeficiency-virus-infected Caucasian and African subjects. Clin Sci (Lond) 1991; 81:327-34; PMID:1655333; http://dx.doi.org/10.1042/cs0810327
  • Stockmann M, Fromm M, Schmitz H, Schmidt W, Riecken EO, Schulzke JD. Duodenal biopsies of HIV-infected patients with diarrhoea exhibit epithelial barrier defects but no active secretion. Aids 1998; 12:43-51; PMID:9456254; http://dx.doi.org/10.1097/00002030-199801000-00006
  • Toschi E, Bacigalupo I, Strippoli R, Chiozzini C, Cereseto A, Falchi M, Nappi F, Sgadari C, Barillari G, Mainiero F, et al. HIV-1 Tat regulates endothelial cell cycle progression via activation of the Ras/ERK MAPK signaling pathway. Mol Biol Cell 2006; 17:1985-94; PMID:16436505; http://dx.doi.org/10.1091/mbc.E05-08-0717
  • Barillari G, Sgadari C, Fiorelli V, Samaniego F, Colombini S, Manzari V, Modesti A, Nair BC, Cafaro A, Stürzl M, et al. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the alpha5beta1 and alphavbeta3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 1999; 94:663-72; PMID:10397733
  • Watson K, Edwards RJ HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochem Pharmacol 1999; 58:1521-28; PMID:10535742; http://dx.doi.org/10.1016/S0006-2952(99)00209-9
  • Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D, Presta M, Rusnati M. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2005; 25:2315-20; PMID:16166568; http://dx.doi.org/10.1161/01.ATV.0000186182.14908.7b
  • Vogel BE, Lee SJ, Hildebrand A, Craig W, Pierschbacher MD, Wong-Staal F, Ruoslahti E. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J Cell Biol 1993; 121:461-8; PMID:7682219; http://dx.doi.org/10.1083/jcb.121.2.461
  • Andras IE, Pu H, Tian J, Deli MA, Nath A, Hennig B, Toborek M. Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 2005; 25:1159-70; PMID:15815581; http://dx.doi.org/10.1038/sj.jcbfm.9600115
  • Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003; 74:255-65; PMID:14515355; http://dx.doi.org/10.1002/jnr.10762
  • Ju SM, Song HY, Lee JA, Lee SJ, Choi SY, Park J. Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes. Exp Mol Med 2009; 41:86-93; PMID:19287189; http://dx.doi.org/10.3858/emm.2009.41.2.011
  • Ben Haij N, Leghmari K, Planes R, Thieblemont N, Bahraoui E HIV-1 Tat protein binds to TLR4-MD2 and signals to induce TNF-alpha and IL-10. Retrovirology 2013; 10:123; PMID:24165011; http://dx.doi.org/10.1186/1742-4690-10-123
  • Ben Haij N, Planès R, Leghmari K, Serrero M, Delobel P, Izopet J, BenMohamed L, Bahraoui E. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-kappaB Pathway. PloS One 2015; 10:e0129425; PMID:26090662; http://dx.doi.org/10.1371/journal.pone.0129425
  • Zhong Y, Zhang B, Eum SY, Toborek M HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci 2012; 32:143-50; PMID: 22219277; http://dx.doi.org/10.1523/JNEUROSCI.4266-11.2012
  • Rodriguez-Inigo E, Jiménez E, Bartolomé J, Ortiz-Movilla N, Bartolomé Villar B, José Arrieta J, Manzarbeitia F, Carreño V. Detection of human immunodeficiency virus type 1 RNA by in situ hybridization in oral mucosa epithelial cells from anti-HIV-1 positive patients. J Med Virol 2005; 77:17-22; PMID:16032727; http://dx.doi.org/10.1002/jmv.20409
  • Chou LL, Epstein J, Cassol SA, West DM, He W, Firth JD. Oral mucosal Langerhans' cells as target, effector and vector in HIV infection. J Oral Pathol Med 2000; 29:394-402; PMID:10972348; http://dx.doi.org/10.1034/j.1600-0714.2000.290805.x
  • Kakizawa J, Ushijima H, Oka S, Ikeda Y, Schröder HC, Müller WE. Detection of human immunodeficiency virus-1 DNA, RNA and antibody, and occult blood in inactivated saliva: availability of the filter paper disk method. Acta Paediatr Jpn 1996; 38:218-23; PMID:8741309; http://dx.doi.org/10.1111/j.1442-200X.1996.tb03473.x
  • Maticic M, Poljak M, Kramar B, Tomazic J, Vidmar L, Zakotnik B, Skaleric U. Proviral HIV-1 DNA in gingival crevicular fluid of HIV-1-infected patients in various stages of HIV disease. J Dent Res 2000; 79:1496-501; PMID:11005734; http://dx.doi.org/10.1177/00220345000790071101
  • Qureshi MN, Barr CE, Hewlitt I, Boorstein R, Kong F, Bagasra O, Bobroski LE, Joshi B. Detection of HIV in oral mucosal cells. Oral Dis 1997; 3(Suppl 1):S73-7; PMID:9456662; http://dx.doi.org/10.1111/j.1601-0825.1997.tb00380.x
  • Nuovo GJ, Forde A, MacConnell P, Fahrenwald R. In situ detection of PCR-amplified HIV-1 nucleic acids and tumor necrosis factor cDNA in cervical tissues. Am J Pathol 1993; 143:40-8; PMID:8317555
  • Clemetson DB, Moss GB, Willerford DM, Hensel M, Emonyi W, Holmes KK, Plummer F, Ndinya-Achola J, Roberts PL, Hillier S, et al. Detection of HIV DNA in cervical and vaginal secretions. Prevalence and correlates among women in Nairobi, Kenya. JAMA 1993; 269:2860-4; PMID:8497089; http://dx.doi.org/10.1001/jama.1993.03500220046024
  • Henning TR, Kissinger P, Lacour N, Meyaski-Schluter M, Clark R, Amedee AM. Elevated cervical white blood cell infiltrate is associated with genital HIV detection in a longitudinal cohort of antiretroviral therapy-adherent women. J Infect Dis 2010; 202:1543-52; PMID:20925530; http://dx.doi.org/10.1086/656720
  • Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375:497-500; PMID:7539892; http://dx.doi.org/10.1038/375497a0
  • Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A 2000; 97:11466-71; PMID:11027346; http://dx.doi.org/10.1073/pnas.97.21.11466
  • Oh SK, Cruikshank WW, Raina J, Blanchard GC, Adler WH, Walker J, Kornfeld H. Identification of HIV-1 envelope glycoprotein in the serum of AIDS and ARC patients. J Acquir Immune Defic Syndr 1992; 5:251-6; PMID:1740750; http://dx.doi.org/10.1097/00126334-199203000-00005
  • Rychert J, Strick D, Bazner S, Robinson J, Rosenberg E. Detection of HIV gp120 in plasma during early HIV infection is associated with increased proinflammatory and immunoregulatory cytokines. AIDS Res Hum Retroviruses 2010; 26:1139-45; PMID:20722464; http://dx.doi.org/10.1089/aid.2009.0290
  • Santosuosso M, Righi E, Lindstrom V, Leblanc PR, Poznansky MC HIV-1 envelope protein gp120 is present at high concentrations in secondary lymphoid organs of individuals with chronic HIV-1 infection. J Infect Dis 2009; 200:1050-3; PMID:19698075; http://dx.doi.org/10.1086/605695
  • Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, Nguyen PL, Khoruts A, Larson M, Haase AT, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004; 200:749-59; PMID:15365096; http://dx.doi.org/10.1084/jem.20040874
  • Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol 2008; 1:23-30; PMID:19079157; http://dx.doi.org/10.1038/mi.2007.1
  • Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity 2013; 39:633-45; PMID:24138880; http://dx.doi.org/10.1016/j.immuni.2013.10.001
  • Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, Robinson J, Huang Y, Epling L, Martin JN, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis 2014; 210:1228-38; PMID:24755434; http://dx.doi.org/10.1093/infdis/jiu238
  • Smith AJ, Schacker TW, Reilly CS, Haase, AT. A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. J Acquir Immune Defic Syndr 2010; 55:306-15; PMID:20700059; http://dx.doi.org/10.1097/QAI.0b013e3181ecfeca
  • Lackner AA, Mohan M, Veazey RS. The gastrointestinal tract and AIDS pathogenesis. Gastroenterology 2009; 136:1965-78; PMID:19462506; http://dx.doi.org/10.1053/j.gastro.2008.12.071
  • Norris PJ, Pappalardo BL, Custer B, Spotts G, Hecht FM, Busch MP. Elevations in IL-10, TNF-alpha, and IFN-gamma from the earliest point of HIV Type 1 infection. AIDS Res Hum Retroviruses 2006; 22:757-62; PMID:16910831; http://dx.doi.org/10.1089/aid.2006.22.757
  • Shapshak P, Duncan R, Minagar A, Rodriguez de la Vega P, Stewart RV, Goodkin K. Elevated expression of IFN-gamma in the HIV-1 infected brain. Front Biosci 2004; 9:1073-81; PMID:14977530; http://dx.doi.org/10.2741/1271
  • Kobayashi S, Hamamoto Y, Kobayashi N, Yamamoto N. Serum level of TNF alpha in HIV-infected individuals. AIDS 1990; 4:169-70; PMID:2328100; http://dx.doi.org/10.1097/00002030-199002000-00014
  • Matsumoto T, Miike T, Nelson RP, Trudeau WL, Lockey RF, Yodoi J. Elevated serum levels of IL-8 in patients with HIV infection. Clin Exp Immunol 1993; 93:149-51; PMID:8348739; http://dx.doi.org/10.1111/j.1365-2249.1993.tb07957.x
  • Breen EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, Kishimoto T, Martinez-Maza O. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol 1990; 144:480-4; PMID:2295799
  • Schols D, De Clercq E. Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J Virol 1996; 70:4953-60; PMID:8764000
  • Cheung R, Ravyn V, Wang L, Ptasznik A, Collman, RG Signaling mechanism of HIV-1 gp120 and virion-induced IL-1beta release in primary human macrophages. J Immunol 2008; 180:6675-84; PMID:18453587; http://dx.doi.org/10.4049/jimmunol.180.10.6675
  • Lee C, Tomkowicz B, Freedman BD, Collman RG. HIV-1 gp120-induced TNF-{alpha} production by primary human macrophages is mediated by phosphatidylinositol-3 (PI-3) kinase and mitogen-activated protein (MAP) kinase pathways. J Leukoc Biol 2005; 78:1016-23; PMID:16081599; http://dx.doi.org/10.1189/jlb.0105056
  • Jiang J, Fu W, Wang X, Lin PH, Yao Q, Chen C. HIV gp120 induces endothelial dysfunction in tumour necrosis factor-alpha-activated porcine and human endothelial cells. Cardiovasc Res 87, 366-374 (2010); PMID:20083573; http://dx.doi.org/10.1093/cvr/cvq013
  • Mayne, M, Bratanich AC, Chen P, Rana F, Nath A, Power C. HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease. Neuroimmunomodulation 5, 184-192 (1998); PMID:9730685; http://dx.doi.org/10.1159/000026336
  • Bojarski C, Gitter AH, Bendfeldt K, Mankertz J, Schmitz H, Wagner S, Fromm M, Schulzke JD. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol 2001; 535:541-52; PMID:11533143; http://dx.doi.org/10.1111/j.1469-7793.2001.00541.x
  • Stockmann M, Schmitz H, Fromm M, Schmidt W, Pauli G, Scholz P, Riecken EO, Schulzke JD. Mechanisms of epithelial barrier impairment in HIV infection. Ann N Y Acad Sci 2000; 915:293-03; PMID:11193591; http://dx.doi.org/10.1111/j.1749-6632.2000.tb05257.x
  • Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 2000; 113(Pt 11):2085-90; PMID:10806119
  • Schmitz H, Rokos K, Florian P, Gitter AH, Fromm M, Scholz P, Ullrich R, Zeitz M, Pauli G, Schulzke JD. Supernatants of HIV-infected immune cells affect the barrier function of human HT-29/B6 intestinal epithelial cells. Aids 2002; 16:983-91; PMID:11953464; http://dx.doi.org/10.1097/00002030-200205030-00004
  • Cicala C, Arthos J, Rubbert A, Selig S, Wildt K, Cohen OJ, Fauci AS. HIV-1 envelope induces activation of caspase-3 and cleavage of focal adhesion kinase in primary human CD4(+) T cells. Proc Natl Acad Sci U S A 2000; 97:1178-83; PMID:10655504; http://dx.doi.org/10.1073/pnas.97.3.1178
  • Fasano A Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 2011; 91:151-75; PMID:21248165; http://dx.doi.org/10.1152/physrev.00003.2008
  • Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers 2015; 3:e977176; PMID:25838982; http://dx.doi.org/10.4161/21688370.2014.977176
  • Gaulke CA, Porter M, Han YH, Sankaran-Walters S, Grishina I, George MD, Dang AT, Ding SW, Jiang G, Korf I, et al. Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections. J Virol 2014; 88:6268-80; PMID:24672033; http://dx.doi.org/10.1128/JVI.00097-14
  • Vyboh K, Jenabian MA, Mehraj V, Routy JP. HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res 2015; 2015:614127; PMID:25759844; http://dx.doi.org/10.1155/2015/614127
  • Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, Shih R, Lewis J, Wiley DJ, Phair JP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999; 179:859-70; PMID:10068581; http://dx.doi.org/10.1086/314660
  • Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12:1365-71; PMID:17115046; http://dx.doi.org/10.1038/nm1511
  • Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 2013; 5:193ra191; PMID:23843452; http://dx.doi.org/10.1126/scitranslmed.3006438
  • Capini CJ, Richardson MW, Hendel H, Sverstiuk A, Mirchandani J, Régulier EG, Khalili K, Zagury JF, Rappaport J. Autoantibodies to TNFalpha in HIV-1 infection: prospects for anti-cytokine vaccine therapy. Biomed Pharmacother 2001; 55:23-31; PMID:11237281; http://dx.doi.org/10.1016/S0753-3322(00)00018-4
  • Jacobson JM, Greenspan JS, Spritzler J, Ketter N, Fahey JL, Jackson JB, Fox L, Chernoff M, Wu AW, MacPhail LA, et al. Thalidomide for the treatment of oral aphthous ulcers in patients with human immunodeficiency virus infection. National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group. N Engl J Med 1997; 336:1487-93; PMID:9154767; http://dx.doi.org/10.1056/NEJM199705223362103
  • Zolotarevsky Y, Hecht G, Koutsouris A, Gonzalez DE, Quan C, Tom J, Mrsny RJ, Turner JR. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology 2002; 123:163-72; PMID:12105845; http://dx.doi.org/10.1053/gast.2002.34235
  • Beachler DC, Sugar EA, Margolick JB, Weber KM, Strickler HD, Wiley DJ, Cranston RD, Burk RD, Minkoff H, Reddy S, et al. Risk factors for acquisition and clearance of oral human papillomavirus infection among HIV-infected and HIV-uninfected adults. Am J Epidemiol 2015; 181:40-53; PMID:25480823; http://dx.doi.org/10.1093/aje/kwu247
  • Brickman C, Palefsky JM. Cancer in the HIV-Infected Host: Epidemiology and Pathogenesis in the Antiretroviral Era. Current HIV/AIDS reports (2015); Dec;12(4):388-96; PMID: 26475669; http://dx.doi.org/10.1007/s11904-015-0283-7
  • Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT. Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 2007; 13:857-61; PMID:17603495; http://dx.doi.org/10.1038/nm1598
  • Krummenacher C, Nicola AV, Whitbeck JC, Lou H, Hou W, Lambris JD, Geraghty RJ, Spear PG, Cohen GH, Eisenberg RJ. Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 1998; 72:7064-74; PMID:9696799
  • Yoon M, Spear PG. Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 2002; 76:7203-8; PMID:12072519; http://dx.doi.org/10.1128/JVI.76.14.7203-7208.2002
  • Grinde B. Herpesviruses: latency and reactivation - viral strategies and host response. J Oral Microbiol 2013; 5:1–9; PMID:24167660; http://dx.doi.org/10.3402/jom.v5i0.22766
  • Posavad CM, Wald A, Kuntz S, Huang ML, Selke S, Krantz E, Corey L. Frequent reactivation of herpes simplex virus among HIV-1-infected patients treated with highly active antiretroviral therapy. J Infect Dis 2004; 190:693-6; PMID:15272395; http://dx.doi.org/10.1086/422755
  • Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J, Song X, Ding M, Deng H. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 2007; 81:12465-71; PMID:17804490; http://dx.doi.org/10.1128/JVI.01457-07
  • Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009; 457:882-6; PMID:19182773; http://dx.doi.org/10.1038/nature07684
  • Coyne CB, Voelker T, Pichla SL, Bergelson, JM The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 2004; 279:48079-84; PMID: 15364909; http://dx.doi.org/10.1074/jbc.M409061200
  • Coyne CB, Shen L, Turner JR, Bergelson JM. Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5. Cell Host Microbe 2007; 2:181-92; PMID:18005733; http://dx.doi.org/10.1016/j.chom.2007.07.003
  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104:441-51; PMID:11239401; http://dx.doi.org/10.1016/S0092-8674(01)00231-8
  • Torres-Flores JM, Silva-Ayala D, Espinoza MA, Lopez S, Arias CF. The tight junction protein JAM-A functions as coreceptor for rotavirus entry into MA104 cells. Virology 2015; 475:172-8; PMID:25481868; http://dx.doi.org/10.1016/j.virol.2014.11.016
  • Liberto MC, Zicca E, Pavia G, Quirino A, Marascio N, Torti C, Focà A. Virological Mechanisms in the Coinfection between HIV and HCV. Mediators Inflamm 2015; 2015:320532; PMID:26494946; http://dx.doi.org/10.1155/2015/320532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.