1,476
Views
15
CrossRef citations to date
0
Altmetric
Review

Control of cell mechanics by RhoA and calcium fluxes during epithelial scattering

, &
Article: e1187326 | Received 02 Feb 2016, Accepted 01 May 2016, Published online: 01 Jun 2016

References

  • Ivanov AI, Naydenov NG. Chapter Two - Dynamics and Regulation of Epithelial Adherens Junctions: Recent Discoveries and Controversies. In: Kwang WJ, ed. International Review of Cell and Molecular Biology: Academic Press, 2013:27-99
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119:1420-8; PMID:19487818; http://dx.doi.org/10.1172/JCI39104
  • Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 1985; 77:209-23; PMID:3841349
  • Weidner KM, Arakaki N, Hartmann G, Vandekerckhove J, Weingart S, Rieder H, Fonatsch C, Tsubouchi H, Hishida T, Daikuhara Y. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A 1991; 88:7001-5; PMID:1831266; http://dx.doi.org/10.1073/pnas.88.16.7001
  • Furlong RA, Takehara T, Taylor WG, Nakamura T, Rubin JS. Comparison of biological and immunochemical properties indicates that scatter factor and hepatocyte growth factor are indistinguishable. J Cell Sci 1991; 100:173-7; PMID:1839027
  • Montesano R, Matsumoto K, Nakamura T, Orci L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 1991; 67:901-8; PMID:1835669; http://dx.doi.org/10.1016/0092-8674(91)90363-4
  • Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991; 10:2867-78; PMID:1655405
  • LI Y, Joseph A, Bhargava MM, Rosen EM, Nakamura T, Goldberg I. Effect of scatter factor and hepatocyte growth factor on motility and morphology of mdck cells. In Vitro Cell Dev Biol 1992; 28:364-8; http://dx.doi.org/10.1007/BF02877060
  • Sperry RB, Bishop NH, Bramwell JJ, Brodeur MN, Carter MJ, Fowler BT, Lewis ZB, Maxfield SD, Staley DM, Vellinga RM, et al. Zyxin controls migration in epithelial-mesenchymal transition by mediating actin-membrane linkages at cell-cell junctions. J Cell Physiol 2010; 222:612-24; PMID:19927303
  • Martin AC, Kaschube M, Wieschaus EF. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009; 457:495-9; PMID:19029882; http://dx.doi.org/10.1038/nature07522
  • Hoj JP, Davis JA, Fullmer KE, Morrell DJ, Saguibo NE, Schuler JT, Tuttle KJ, Hansen MD. Cellular contractility changes are sufficient to drive epithelial scattering. Exp Cell Res 2014; 326:187-200; PMID:24780819; http://dx.doi.org/10.1016/j.yexcr.2014.04.011
  • de Rooij J, Kerstens A, Danuser G, Schwartz MA, Waterman-Storer CM. Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J Cell Biol 2005; 171:153-64; PMID:16216928; http://dx.doi.org/10.1083/jcb.200506152
  • Citi S, Guerrera D, Spadaro D, Shah J. Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases 2014; 5:1-15; PMID:25483301; http://dx.doi.org/10.4161/21541248.2014.973760
  • Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938; http://dx.doi.org/10.4161/tisb.26938
  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, et al. Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase). Science 1996; 273:245-8; PMID:8662509; http://dx.doi.org/10.1126/science.273.5272.245
  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). J Biol Chem 1996; 271:20246-9; PMID:8702756; http://dx.doi.org/10.1074/jbc.271.34.20246
  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). J Biol Chem 1996; 271:20246-9; PMID:8702756; http://dx.doi.org/10.1074/jbc.271.34.20246
  • Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003; 4:446-56; PMID:12778124; http://dx.doi.org/10.1038/nrm1128
  • Jiang L, Wen J, Luo W. Rho associated kinase inhibitor, Y27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep 2015; 12:7526-30; PMID:26459851
  • Okamoto K, Bosch M, Hayashi Y. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda) 2009; 24:357-66; PMID:19996366; http://dx.doi.org/10.1152/physiol.00029.2009
  • Fonseca R. Activity-dependent actin dynamics are required for the maintenance of long-term plasticity and for synaptic capture. Eur J Neurosci 2012; 35:195-206; PMID:22250814; http://dx.doi.org/10.1111/j.1460-9568.2011.07955.x
  • Schubert V, Da Silva JS, Dotti CG. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 2006; 172:453-67; PMID:16449195; http://dx.doi.org/10.1083/jcb.200506136
  • Lammers M, Meyer S, Kuhlmann D, Wittinghofer A. Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 2008; 283:35236-46; PMID:18829452; http://dx.doi.org/10.1074/jbc.M805634200
  • Narumiya S, Tanji M, Ishizaki T. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 2009; 28:65-76; PMID:19160018; http://dx.doi.org/10.1007/s10555-008-9170-7
  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1999; 1:136-43; PMID:10559899; http://dx.doi.org/10.1038/11056
  • Ackermann M, Matus A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 2003; 6:1194-200; PMID:14555951; http://dx.doi.org/10.1038/nn1135
  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the Actin Cytoskeleton Through Protein Kinases ROCK and LIM-kinase. Science 1999; 285:895-8; PMID:10436159; http://dx.doi.org/10.1126/science.285.5429.895
  • Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11:1709-25; PMID:10793146; http://dx.doi.org/10.1091/mbc.11.5.1709
  • Baffy G, Yang L, Michalopoulos GK, Williamson JR. Hepatocyte growth factor induces calcium mobilization and inositol phosphate production in rat hepatocytes. J Cell Physiol 1992; 153:332-9; PMID:1429853; http://dx.doi.org/10.1002/jcp.1041530213
  • Kawanishi T, Kato T, Asoh H, Uneyama C, Toyoda K, Momose K, Takahashi M, Hayashi Y. Hepatocyte growth factor-induced calcium waves in hepatocytes as revealed with rapid scanning confocal microscopy. Cell Calcium 1995; 18:495-504; PMID:8746948; http://dx.doi.org/10.1016/0143-4160(95)90012-8
  • Langford PR, Keyes L, Hansen MD. Plasma membrane ion fluxes and NFAT-dependent gene transcription contribute to c-met-induced epithelial scattering. J Cell Sci 2012; 125:4001-13; PMID:22685327; http://dx.doi.org/10.1242/jcs.098269
  • Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney JW, Jr., Goodhill GJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene 2014; 33:2307-16; PMID:23686305; http://dx.doi.org/10.1038/onc.2013.187
  • Garriock RJ, Krieg PA. Wnt11-R signaling regulates a calcium sensitive EMT event essential for dorsal fin development of Xenopus. Dev Biol 2007; 304:127-40; PMID:17240368; http://dx.doi.org/10.1016/j.ydbio.2006.12.020
  • Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol 2011; 12:218; PMID:21401968; http://dx.doi.org/10.1186/gb-2011-12-3-218
  • Song J, Wang Y, Li X, Shen Y, Yin M, Guo Y, Diao L, Liu Y, Yue D. Critical role of TRPC6 channels in the development of human renal cell carcinoma. Mol Biol Rep 2013; 40:5115-22; PMID:23700295; http://dx.doi.org/10.1007/s11033-013-2613-4
  • Wang Y, Yue D, Li K, Liu Y-L, Ren C-S, Wang P. The role of TRPC6 in HGF-induced cell proliferation of human prostate cancer DU145 and PC3 cells. Asian J Androl 2010; 12:841-52; PMID:20835261; http://dx.doi.org/10.1038/aja.2010.85
  • Rampino T, Gregorini M, Guidetti C, Broggini M, Marchini S, Bonomi R, Maggio M, Roscini E, Soccio G, Tiboldo R, et al. KCNA1 and TRPC6 ion channels and NHE1 exchanger operate the biological outcome of HGF/scatter factor in renal tubular cells. Growth Factors 2007; 25:382-91; PMID:18365869; http://dx.doi.org/10.1080/08977190801892184
  • Boca M, D'Amato L, Distefano G, Polishchuk RS, Germino GG, Boletta A. Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3β-dependent Cell–cell mechanical adhesion. Mol Biol Cell 2007; 18:4050-61; PMID:17671167; http://dx.doi.org/10.1091/mbc.E07-02-0142
  • Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R. TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 2004; 36:19-28; PMID:15126053; http://dx.doi.org/10.1016/j.ceca.2003.11.006
  • Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Paria B, Munaron L, Ambudkar IS. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 2012; 31:200-12; PMID:21685934; http://dx.doi.org/10.1038/onc.2011.231
  • Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 2004; 6:709-20; PMID:15258588; http://dx.doi.org/10.1038/ncb1150
  • Odell AF, Scott JL, Van Helden DF. Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 2005; 280:37974-87; PMID:16144838; http://dx.doi.org/10.1074/jbc.M503646200
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10:513-25; PMID:19603039; http://dx.doi.org/10.1038/nrm2728
  • van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca(2+) channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 2006; 26:303-12; PMID:16354700; http://dx.doi.org/10.1128/MCB.26.1.303-312.2006
  • Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, 2nd, Deretic D, Wandinger-Ness A. A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1. Mol Biol Cell 2011; 22:3289-305; PMID:21775626; http://dx.doi.org/10.1091/mbc.E11-01-0082
  • Peranen J. Rab8 GTPase as a regulator of cell shape. Cytoskeleton 2011; 68:527-39; PMID:21850707; http://dx.doi.org/10.1002/cm.20529
  • Grigoriev I, Yu Ka L, Martinez-Sanchez E, Serra-Marques A, Smal I, Meijering E, Demmers J, Peränen J, Pasterkamp RJ, van der Sluijs P, et al. Rab6, Rab8, and MICAL3 cooperate in controlling docking and fusion of exocytotic carriers. Curr Biol 2011; 21:967-74; PMID:21596566; http://dx.doi.org/10.1016/j.cub.2011.04.030
  • Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Revi Mol Cell Biol 2009; 10:597-608; PMID:19696797; http://dx.doi.org/10.1038/nrm2755
  • Sönnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J Cell Biol 2000; 149:901-14; PMID:10811830; http://dx.doi.org/10.1083/jcb.149.4.901
  • Knödler A, Feng S, Zhang J, Zhang X, Das A, Peränen J, Guo W. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A 2010; 107:6346-51; PMID:20308558; http://dx.doi.org/10.1073/pnas.1002401107
  • Bryant DM, Datta A, Rodriguez-Fraticelli AE, Peranen J, Martin-Belmonte F, Mostov KE. A molecular network for de novo generation of the apical surface and lumen. Nat Cell Biol 2010; 12:1035-45; PMID:20890297; http://dx.doi.org/10.1038/ncb2106
  • Wang J, Ren J, Wu B, Feng S, Cai G, Tuluc F, Peränen J, Guo W. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proc Natl Acad Sci U S A 2015; 112:148-53; PMID:25535387; http://dx.doi.org/10.1073/pnas.1412089112
  • Frémin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010; 3:8; http://dx.doi.org/10.1186/1756-8722-3-8
  • Dong W, Qin G, Shen R. Rab11-FIP2 promotes the metastasis of gastric cancer cells. Int J Cancer 2016; 138:1680-8; PMID:26502090; http://dx.doi.org/10.1002/ijc.29899
  • Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpää K, Laakkonen P, Peränen J. Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci 2006; 119:4866-77; PMID:17105768; http://dx.doi.org/10.1242/jcs.03275
  • Peränen J, Auvinen P, Virta H, Wepf R, Simons K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J Cell Biol 1996; 135:153-67; http://dx.doi.org/10.1083/jcb.135.1.153
  • Bravo‐Cordero JJ, Marrero‐Diaz R, Megías D, Genís L, García‐Grande A, García MA, Arroyo AG, Montoya MC. MT1‐MMP proinvasive activity is regulated by a novel Rab8‐dependent exocytic pathway. EMBO J 2007; 26:1499-510; PMID:17332756; http://dx.doi.org/10.1038/sj.emboj.7601606
  • Bravo-Cordero JJ, Cordani M, Soriano SF, Díez B, Muñoz-Agudo C, Casanova-Acebes M, Boullosa C, Guadamillas MC, Ezkurdia I, González-Pisano D, et al. A novel high content analysis tool reveals Rab8-driven actin and FA reorganization through Rho GTPases and calpain/MT1. J Cell Sci 2016; 129:1734-49; PMID:26940916
  • Grycova L, Holendova B, Lansky Z, Bumba L, Jirku M, Bousova K, Teisinger J. Ca2+ binding protein S100A1 competes with calmodulin and PtdIns(4,5)P2 for binding site on the C-terminus of the TPRV1 receptor. ACS Chem Neurosci 2015; 6:386-92; PMID:25543978; http://dx.doi.org/10.1021/cn500250r
  • Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 2007; 54:905-18; PMID:17582331; http://dx.doi.org/10.1016/j.neuron.2007.05.027
  • Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci 2007; 27:7070-80; PMID:17596456; http://dx.doi.org/10.1523/JNEUROSCI.1866-07.2007
  • Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE. Ca(2+)-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2010; 30:13338-47; PMID:20926660; http://dx.doi.org/10.1523/JNEUROSCI.2108-10.2010
  • de Groot T, Kovalevskaya NV, Verkaart S, Schilderink N, Felici M, van der Hagen EAE, Bindels RJM, Vuister GW, Hoenderop JG. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol Cell Biol 2011; 31:2845-53; PMID:21576356; http://dx.doi.org/10.1128/MCB.01319-10
  • Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem 2012; 287:16645-55; PMID:22451665; http://dx.doi.org/10.1074/jbc.M112.350686
  • Zhu M. Multiple roles of calmodulin and other Ca2+-binding proteins in the functional regulation of TRP channels. Pflügers Archiv 2005; 451:105-15; PMID:15924238; http://dx.doi.org/10.1007/s00424-005-1427-1
  • Black DJ, Leonard J, Persechini A. Biphasic Ca2+ -dependent switching in a calmodulin-IQ domain complex. Biochemistry 2006; 45:6987-95; PMID:16734434; http://dx.doi.org/10.1021/bi052533w
  • Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, 3rd, Vogel SS. Covert changes in CaMKII holoenzyme structure identified for activation and subsequent interactions. Biophys J 2015; 108:2158-70; PMID:25954874; http://dx.doi.org/10.1016/j.bpj.2015.03.028
  • Wang Y-y, Zhao R, Zhe H. The emerging role of CaMKII in cancer. Oncotarget 2015; 6:11725-34
  • Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 2002; 71:473-510; PMID:12045104; http://dx.doi.org/10.1146/annurev.biochem.71.110601.135410
  • Hoelz A, Nairn AC, Kuriyan J. Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol Cell 2003; 11:1241-51; PMID:12769848; http://dx.doi.org/10.1016/S1097-2765(03)00171-0
  • Colbran RJ, Fong Y-L, Schworer CM, Soderling TR. Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase 1. J Biol Chem 1988; 263:18145-51
  • Rellos P, Pike AC, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 2010; 8:e1000426; PMID:20668654; http://dx.doi.org/10.1371/journal.pbio.1000426
  • Hoffman L, Stein RA, Colbran RJ, McHaourab HS. Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO J 2011; 30:1251-62; http://dx.doi.org/10.1038/emboj.2011.40
  • Mukherji S, Soderling TR. Mutational analysis of Ca2+-independent autophosphorylation of calcium/calmodulin-dependent protein kinase II. J Biol Chem 1995; 270:14062-7; http://dx.doi.org/10.1074/jbc.270.23.14062
  • Yang E, Schulman H. Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. J Biol Chem 1999; 274:26199-208
  • Hanson PtdIns, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 1992; 61:559-61; http://dx.doi.org/10.1146/annurev.bi.61.070192.003015
  • Lucic V, Greif GJ, Kennedy MB. Detailed state model of CaMKII activation and autophosphorylation. Eur Biophys J 2008; 38:83-98; http://dx.doi.org/10.1007/s00249-008-0362-4
  • Mukherji S, Soderling TR. Regulation of Ca2+/Calmodulin-dependent Protein Kinase I1 by Inter- and Intrasubunit-catalyzed Autophosphorylations. J Biol Chem 1994; 269:13744-7
  • Bradshaw JM, Hudmon A, Schulman H. Chemical quenched flow kinetic studies indicate an intraholoenzyme autophosphorylation mechanism for Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 2002; 277:20991-8; PMID:11925447; http://dx.doi.org/10.1074/jbc.M202154200
  • Sun X, Zhao D, Li YL, Sun Y, Lei XH, Zhang JN, Wu MM, Li RY, Zhao ZF, Zhang ZR, et al. Regulation of ASIC1 by Ca2+/calmodulin-dependent protein kinase II in human glioblastoma multiforme. Oncol Rep 2013; 30:2852-8; PMID:24100685
  • Tortes MA, Yang-Snyder JA, Purcell SM, DeMarais AA, McGrew LL, Moon RT. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherinin early xenopus development. J Cell Biol 1996; 133:1123-37; PMID:8655584; http://dx.doi.org/10.1083/jcb.133.5.1123
  • Kuhl M, Geis K, Sheldahl LC, Pukrop T, Moon RT, Wedlich D. Antagonistic regulation of convergent extention movements in zenopus by Wnt/Beta-catenin and Wnt/Ca2+ signaling. Mech Dev 2001; 106:61-76; PMID:11472835; http://dx.doi.org/10.1016/S0925-4773(01)00416-6
  • Daft PG, Yuan K, Warram JM, Klein MJ, Siegal GP, Zayzafoon M. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma. Mol Cancer Res 2013; 11:349-59; PMID:23364534; http://dx.doi.org/10.1158/1541-7786.MCR-12-0572
  • Bergamaschi A, Kim YH, Kwei KA, La Choi Y, Bocanegra M, Langerod A, Han W, Noh DY, Huntsman DG, Jeffrey SS, et al. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer. Mol Oncol 2008; 2:327-39; PMID:19383354; http://dx.doi.org/10.1016/j.molonc.2008.09.004
  • Wang Q, Symes AJ, Kane CA, Freeman A, Nariculam J, Munson P, Thrasivoulou C, Masters JR, Ahmed A. A novel role for Wnt/Ca2+ signaling in actin cytoskeleton remodeling and cell motility in prostate cancer. PloS One 2010; 5:e10456; PMID:20454608; http://dx.doi.org/10.1371/journal.pone.0010456
  • Tansey MG, Word RA, Hidaka H, Singer HA, Schworer CM, Kamm KE, Stull JT. Phosphorylation of myosin light chain kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells. J Biol Chem 1992; 267:12511-6; PMID:1319999
  • Hashimoto Y, Soderling TR. Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: Comparative study of the phosphorylation sites. Arch Biochem Biophys 1990; 278:41-5; PMID:2157362; http://dx.doi.org/10.1016/0003-9861(90)90228-Q
  • Prasad AM, Nuno DW, Koval OM, Ketsawatsomkron P, Li W, Li H, Shen FY, Joiner M-lA, Kutschke W, Weiss RM, et al. Differential control of calcium homeostasis and vascular reactivity by CaMKII. Hypertension 2013; 62:434-41; PMID:23753415; http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01508
  • Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci U S A 2007; 104:6418-23; PMID:17404223; http://dx.doi.org/10.1073/pnas.0701656104
  • Lin YC, Redmond L. CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci U S A 2008; 105:15791-6; PMID:18840684; http://dx.doi.org/10.1073/pnas.0804399105
  • Hoffman L, Farley MM, Waxham MN. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry 2013; 52:1198-207; PMID:23343535; http://dx.doi.org/10.1021/bi3016586
  • Bourguignon LY, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 2006; 281:14026-40; PMID:16565089; http://dx.doi.org/10.1074/jbc.M507734200
  • Grossman SD, Futter M, Snyder GL, Allen PB, Nairn AC, Greengard P, Hsieh-Wilson LC. Spinophilin is phosphorylated by Ca2+/calmodulin-dependent protein kinase II resulting in regulation of its binding to F-actin. J Neurochem 2004; 90:317-24; PMID:15228588; http://dx.doi.org/10.1111/j.1471-4159.2004.02491.x
  • Murakoshi H, Wang H, Yasuda R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 2011; 472:100-4; PMID:21423166; http://dx.doi.org/10.1038/nature09823
  • Yu H, Li X, Marchetto GS, Dy R, Hunter D, Calvo B, Dawson TL, Wilm M, Anderegg RJ, Graves LM, et al. Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem 1996; 271:29993-8; PMID:8939945; http://dx.doi.org/10.1074/jbc.271.47.29993
  • Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 1995; 376:737-45; PMID:7544443; http://dx.doi.org/10.1038/376737a0
  • Ying Z, Giachini FR, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol 2009; 29:1657-63; PMID:19759375; http://dx.doi.org/10.1161/ATVBAHA.109.190892
  • Lim Y, Lim ST, Tomar A, Gardel M, Bernard-Trifilo JA, Chen XL, Uryu SA, Canete-Soler R, Zhai J, Lin H, et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 2008; 180:187-203; PMID:18195107; http://dx.doi.org/10.1083/jcb.200708194
  • Watson JM, Harding TW, Golubovskaya V, Morris JS, Hunter D, Li X, Haskill JS, Earp HS. Inhibition of the calcium-dependent tyrosine kinase (CADTK) blocks monocyte spreading and motility. J Biol Chem 2001; 276:3536-42; PMID:11062241; http://dx.doi.org/10.1074/jbc.M006916200
  • Mariette H.E., Driessensa CO, Koh-ichi Nagatab, Masaki Inagakib, Collarda JG. B plexins activate Rho through PDZ-RhoGEF. FEBS Lett 2002; 529:168-72
  • Oinuma I, Katoh H, Harada A, Negishi M. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J Biol Chem 2003; 278:25671-7; PMID:12730235; http://dx.doi.org/10.1074/jbc.M303047200
  • Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 2002; 277:43115-20; PMID:12183458; http://dx.doi.org/10.1074/jbc.M206005200
  • Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 2001; 276:4527-30; PMID:11096123; http://dx.doi.org/10.1074/jbc.R000028200
  • Ferrari MB, Podugu S, Eskew JD. Assembling the Myofibril. Cell Biochem Biophys 2006; 45:317-37; PMID:16845177; http://dx.doi.org/10.1385/CBB:45:3:317
  • Kuo J-C, Lin J-R, Staddon JM, Hosoya H, Chen R-H. Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J Cell Sci 2003; 116:4777-90; PMID:14600263; http://dx.doi.org/10.1242/jcs.00794
  • Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL. Functions of S100 Proteins. Curr Mol Med 2013; 13:24-57; PMID:22834835; http://dx.doi.org/10.2174/156652413804486214
  • Emberley ED, Murphy LC, Watson PH. S100 proteins and their influence on pro-survival pathways in cancer. Biochem Cell Biol 2004; 82:508-15; PMID:15284904; http://dx.doi.org/10.1139/o04-052
  • Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer 2015; 15:96-109; PMID:25614008; http://dx.doi.org/10.1038/nrc3893
  • Chen H, Xu C, Jin Qe, Liu Z. S100 protein family in human cancer. Am J Cancer Res 2014; 4:89-115; PMID:24660101
  • Donato R. Functional roles of S100 proteins, calcium binding proteins of the EF-hand type. Biochim Biophys Acta 1999; 1450:190-231
  • Salama I, Malone PS, Mihaimeed F, Jones JL. A review of the S100 proteins in cancer. Eur J Surg Oncol 2008; 34:357-64; PMID:17566693; http://dx.doi.org/10.1016/j.ejso.2007.04.009
  • Gross SR, Sin CG, Barraclough R, Rudland PS. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci 2014; 71:1551-79; PMID:23811936; http://dx.doi.org/10.1007/s00018-013-1400-7
  • Lukanidin E, Sleeman JP. Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 2012; 22:216-25; PMID:22381352; http://dx.doi.org/10.1016/j.semcancer.2012.02.006
  • LLoyd BH, Platt-Higgins A, Rudland PS, Barraclough R. Human S100A4 (p9Ka) induces the metastatic phenotype upon benign tumor cells. Oncogene 1998; 17:465-73; PMID:9696040; http://dx.doi.org/10.1038/sj.onc.1201948
  • Maelandsmo GM, Hovig E, Skrede M, Engebraaten O, Florenes VA, Mykiebost O, Grigorian M, Lukanidin E, Scanlon KJ, Fodstad O. Reversal of the in vivo metastatic phenotype of human tumor cells by an anti-CAPL (mts1) ribozyme. Cancer Res 1996; 56:5490-8
  • Ji YF, Huang H, Jiang F, Ni RZ, Xiao MB. S100 family signaling network and related proteins in pancreatic cancer (Review). Int J Mol Med 2014; 33:769-76; PMID:24481067
  • Strutz F, Zeisberg M, Kalluri R, Muller GA, Ziyadeh FN, Yang C-Q, Neilson EG. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002; 61:1714-28; PMID:11967021; http://dx.doi.org/10.1046/j.1523-1755.2002.00333.x
  • Li J-T, Wang L-F, Zhao Y-L, Yang T, Li W, Zhao J, Yu F, Wang L, Meng Y-L, Liu N-N, et al. Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res 2014; 16:454; PMID:25311085; http://dx.doi.org/10.1186/s13058-014-0454-2
  • Grotegut S, von Schweinitz D, Christofori G, Lehembre F. Hepatocyte growth factor induces cell scattering through MAPK/Egr‐1‐mediated upregulation of Snail. EMBO J 2006; 25:3534-45; PMID:16858414; http://dx.doi.org/10.1038/sj.emboj.7601213
  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. [α]-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 2010; 12:533-42; PMID:20453849; http://dx.doi.org/10.1038/ncb2055
  • Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 2012; 109:12568-73; PMID:22802638; http://dx.doi.org/10.1073/pnas.1204390109
  • Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 1998; 392:933-6; PMID:9582075
  • Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M. NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J 2003; 22:3825-32; PMID:12881417; http://dx.doi.org/10.1093/emboj/cdg381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.