1,726
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Claudin-based barrier differentiation in the colonic epithelial crypt niche involves Hopx/Klf4 and Tcf7l2/Hnf4-α cascades

, , , , , , & show all
Article: e1214038 | Received 22 Jun 2016, Accepted 11 Jul 2016, Published online: 19 Jul 2016

References

  • Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 2014; 36C:157-165; ; http://dx.doi.org/10.1016/j.semcdb.2014.08.011
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 2002; 283:C142-147; PMID:12055082; http://dx.doi.org/10.1152/ajpcell.00038.2002
  • Tsukita S, Furuse M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 2000; 149:13-16; PMID:10747082; http://dx.doi.org/10.1083/jcb.149.1.13
  • Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Nat Rev Cancer 2008; 8:415-424; PMID:18480839; http://dx.doi.org/10.1038/nrc2392
  • A3B2 twb=.2w?>Weber CR, Turner JR. Inflammatory bowel disease: is it really just another break in the wall? Gut 2007; 56:6-8; PMID:17172583; http://dx.doi.org/10.1136/gut.2006.104182
  • Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function. Semin Cell Dev Biol 2015; 42:47-57; PMID:25951797; http://dx.doi.org/10.1016/j.semcdb.2015.04.009
  • Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Sem Cell Dev Biol 2014; 36C:166-176; ; http://dx.doi.org/10.1016/j.semcdb.2014.09.002
  • Yu AS. Claudins and the kidney. J Am Soc Nephrol 2015; 26:11-19; PMID:24948743; http://dx.doi.org/10.1681/ASN.2014030284
  • Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology 2013; 144:369-380; PMID:23089202; http://dx.doi.org/10.1053/j.gastro.2012.10.035
  • Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barr 2013; 1:e24978; ; http://dx.doi.org/10.4161/tisb.24978
  • Capaldo CT, Nusrat A. Claudin switching: Physiological plasticity of the Tight Junction. Semin Cell Dev Biol 2015; 42:22-9; PMID:25957515; http://dx.doi.org/10.1016/j.semcdb.2015.04.003
  • Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res 2011; 317:2702-2710; PMID:21978911; http://dx.doi.org/10.1016/j.yexcr.2011.09.006
  • Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 2014; 15:19-33; PMID:24326621
  • Stappenbeck TS, Mills JC, Gordon JI. Molecular features of adult mouse small intestinal epithelial progenitors. Proc Natl Acad Sci U S A 2003; 100:1004-1009; PMID:12552106; http://dx.doi.org/10.1073/pnas.242735899
  • Mariadason JM, Arango D, Shi Q, Wilson AJ, Corner GA, Nicholas C, Aranes MJ, Lesser M, Schwartz EL, Augenlicht LH. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003; 63:8791-8812; PMID:14695196
  • Giannakis M, Stappenbeck TS, Mills JC, Leip DG, Lovett M, Clifton SW, Ippolito JE, Glasscock JI, Arumugam M, Brent MR, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 2006; 281:11292-11300; PMID:16464855; http://dx.doi.org/10.1074/jbc.M512118200
  • Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, Yuen ST, et al. Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A 2007; 104:15418-15423; PMID:17881565; http://dx.doi.org/10.1073/pnas.0707210104
  • Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, Bourgaux JF, Garambois V, Jay P, Blache P, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 2008; 68:4258-4268; PMID:18519685; http://dx.doi.org/10.1158/0008-5472.CAN-07-5805
  • Escaffit F, Boudreau F, Beaulieu JF. Differential expression of claudin-2 along the human intestine: Implication of GATA-4 in the maintenance of claudin-2 in differentiating cells. J Cell Physiol 2005; 203:15-26; PMID:15389642; http://dx.doi.org/10.1002/jcp.20189
  • Bhat AA, Sharma A, Pope J, Krishnan M, Washington MK, Singh AB, Dhawan P. Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PloS one 2012; 7:e37174; PMID:22719836; http://dx.doi.org/10.1371/journal.pone.0037174
  • Farkas AE, Gerner-Smidt C, Lili L, Nusrat A, Capaldo CT. Cryosectioning method for microdissection of murine colonic mucosa. J Visual Exp 2015; 101:e53112; PMID:26274554; http://dx.doi.org/10.3791%2F53112
  • Farkas AE, Hilgarth RS, Capaldo CT, Gerner-Smidt C, Powell DR, Vertino PM, Koval M, Parkos CA, Nusrat A. HNF4alpha regulates claudin-7 protein expression during intestinal epithelial differentiation. Am J Pathol 2015; 185:2206-2218; PMID:26216285; http://dx.doi.org/10.1016/j.ajpath.2015.04.023
  • Darsigny M, Babeu JP, Dupuis AA, Furth EE, Seidman EG, Lévy E, Verdu EF, Gendron FP, Boudreau F. Loss of hepatocyte-nuclear-factor-4alpha affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PloS one 2009; 4:e7609; PMID:19898610; http://dx.doi.org/10.1371/journal.pone.0007609
  • Ghaleb AM, Laroui H, Merlin D, Yang VW. Genetic deletion of Klf4 in the mouse intestinal epithelium ameliorates dextran sodium sulfate-induced colitis by modulating the NF-kappaB pathway inflammatory response. Inflammat Bowel Dis 2014; 20:811-820; ; http://dx.doi.org/10.1097/MIB.0000000000000022
  • McConnell BB, Kim SS, Bialkowska AB, Yu K, Sitaraman SV, Yang VW. Kruppel-like factor 5 protects against dextran sulfate sodium-induced colonic injury in mice by promoting epithelial repair. Gastroenterology 2011; 140:540-549 e542; PMID:21078320; http://dx.doi.org/10.1053/j.gastro.2010.10.061
  • Koval M. Differential pathways of claudin oligomerization and integration into tight junctions. Tissue Barr 2013; 1:e24518; PMID:24665398; http://dx.doi.org/10.4161/tisb.24518
  • Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 2001; 153:263-272; PMID:11309408; http://dx.doi.org/10.1083/jcb.153.2.263
  • Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, Beauchamp RD, Singh AB, Dhawan P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut 2014; 63:622-634; PMID:23766441; http://dx.doi.org/10.1136/gutjnl-2012-304241
  • Edmunds RC, McIntyre JK, Luckenbach JA, Baldwin DH, Incardona JP. Toward enhanced MIQE compliance: reference residual normalization of qPCR gene expression data. J Biomol Tech 2014; 25:54-60; PMID:24982597
  • Shao W, Wang D, Chiang YT, Ip W, Zhu L, Xu F, Columbus J, Belsham DD, Irwin DM, Zhang H, et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes 2013; 62:789-800; PMID:22966074; http://dx.doi.org/10.2337/db12-0365
  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19:379-383; PMID:9697701; http://dx.doi.org/10.1038/1270
  • Cattin AL, Le Beyec J, Barreau F, Saint-Just S, Houllier A, Gonzalez FJ, Robine S, Pinçon-Raymond M, Cardot P, Lacasa M, et al. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol 2009; 29:6294-6308; PMID:19805521; http://dx.doi.org/10.1128/MCB.00939-09
  • San Roman AK, Aronson BE, Krasinski SD, Shivdasani RA, Verzi MP. Transcription factors GATA4 and HNF4A control distinct aspects of intestinal homeostasis in conjunction with transcription factor CDX2. J Biol Chem 2015; 290:1850-1860; PMID:25488664; http://dx.doi.org/10.1074/jbc.M114.620211
  • Chahar S, Gandhi V, Yu S, Desai K, Cowper-Sal-lari R, Kim Y, Perekatt AO, Kumar N, Thackray JK, Musolf A, et al. Chromatin profiling reveals regulatory network shifts and a protective role for hepatocyte nuclear factor 4alpha during colitis. Mol Cell Biol 2014; 34:3291-3304; PMID:24980432; http://dx.doi.org/10.1128/MCB.00349-14
  • Ahn SH, Shah YM, Inoue J, Morimura K, Kim I, Yim S, Lambert G, Kurotani R, Nagashima K, Gonzalez FJ, et al. Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflammat Bowel Dis 2008; 14:908-920; ; http://dx.doi.org/10.1002/ibd.20413
  • Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J, Rychahou PG, Yang VW, He X, Evers BM, et al. Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 2006; 26:2055-2064; PMID:16507986; http://dx.doi.org/10.1128/MCB.26.6.2055-2064.2006
  • Evans PM, Chen X, Zhang W, Liu C. KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol Cell Biol 2010; 30:372-381; PMID:19901072; http://dx.doi.org/10.1128/MCB.00063-09
  • Yamashita K, Katoh H, Watanabe M. The homeobox only protein homeobox (HOPX) and colorectal cancer. Int J Mol Sci 2013; 14:23231-23243; PMID:24287901; http://dx.doi.org/10.3390/ijms141223231
  • Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science 2011; 334:1420-1424; PMID:22075725; http://dx.doi.org/10.1126/science.1213214
  • Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissig S, Troeger H, Richter J, Bojarski C, Schumann M, Fromm M. Epithelial tight junctions in intestinal inflammation. Annal New York Acad Sci 2009; 1165:294-300; ; http://dx.doi.org/10.1111/j.1749-6632.2009.04062.x
  • Ding L, Lu Z, Lu Q, Chen YH. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res 2013; 5:367-375; PMID:24232410
  • Kwon MJ. Emerging roles of claudins in human cancer. Int J Mol Sci 2013; 14:18148-18180; PMID:24009024; http://dx.doi.org/10.3390/ijms140918148
  • Pope JL, Ahmad R, Bhat AA, Washington MK, Singh AB, Dhawan P. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer 2014; 13:167; PMID:24997475; http://dx.doi.org/10.1186/1476-4598-13-167
  • Bhat AA, et al. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene 2015;34(35):4570-80; PMID:25500541; http://dx.doi.org/10.1038/onc.2014.385
  • Baker M, Reynolds LE, Robinson SD, Lees DM, Parsons M, Elia G, Hodivala-Dilke K. Stromal Claudin14-heterozygosity, but not deletion, increases tumour blood leakage without affecting tumour growth. PloS one 2013; 8:e62516; PMID:23675413; http://dx.doi.org/10.1371/journal.pone.0062516
  • Weise A, Bruser K, Elfert S, Wallmen B, Wittel Y, Wöhrle S, Hecht A. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucl Acids Res 2010; 38:1964-1981; PMID:20044351; http://dx.doi.org/10.1093/nar/gkp1197
  • Katoh M, Katoh M. CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med 2003; 11:683-689; PMID:12736707
  • Maryan N, Statkiewicz M, Mikula M, Goryca K, Paziewska A, Strzałkowska A, Dabrowska M, Bujko M, Ostrowski J. Regulation of the expression of claudin 23 by the enhancer of zeste 2 polycomb group protein in colorectal cancer. Mol Med Rep 2015; 12:728-736; PMID:25695204
  • Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 2001; 21:1393-1403; PMID:11158324; http://dx.doi.org/10.1128/MCB.21.4.1393-1403.2001
  • Yoo BK, Yanda MK, No YR, Yun CC. Human intestinal epithelial cell line SK-CO15 is a new model system to study Na(+)/H(+) exchanger 3. Am J Physiol Gastrointest liver Physiol 2012; 303:G180-188; PMID:22556145; http://dx.doi.org/10.1152/ajpgi.00069.2012
  • Capaldo CT, Farkas AE, Hilgarth RS, Krug SM, Wolf MF, Benedik JK, Fromm M, Koval M, Parkos C, Nusrat A. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol Biol Cell 2014; 25:2710-2719; PMID:25031428; http://dx.doi.org/10.1091/mbc.E14-02-0773

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.