2,911
Views
10
CrossRef citations to date
0
Altmetric
Review

The role of Slit-Robo signaling in the regulation of tissue barriers

, , & ORCID Icon
Article: e1331155 | Received 01 Mar 2017, Accepted 11 May 2017, Published online: 09 Jun 2017

References

  • Wang KH, Brose K, Arnott D, Kidd T, Goodman CS, Henzel W, Tessier-Lavigne M. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 1999; 96(6):771-84; PMID:10102266; https://doi.org/10.1016/S0092-8674(00)80588-7
  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999; 96(6):795-806; PMID:10102268; https://doi.org/10.1016/S0092-8674(00)80590-5
  • Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL. Slit and robo expression in the developing mouse lung. Dev Dyn 2004; 230(2):350-60; PMID:15162513; https://doi.org/10.1002/dvdy.20045
  • Piper M, Georgas K, Yamada T, Little M. Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev 2000; 94(1-2):213-7; PMID:10842075; https://doi.org/10.1016/S0925-4773(00)00313-0
  • Lu W, van Eerde AM, Fan X,Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 2007; 80(4):616-32; PMID:17357069; https://doi.org/10.1086/512735
  • Medioni C, Bertrand N, Mesbah K, Hudry B, Dupays L, Wolstein O, Washkowitz AJ, Papaioannou VE, Mohun TJ, Harvey RP, et al. Expression of Slit and Robo genes in the developing mouse heart. Dev Dyn 2010; 239(12):3303-11; PMID:20941780; https://doi.org/10.1002/dvdy.22449
  • Mommersteeg MT, Andrews WD, Ypsilanti AR, Zelina P, Yeh ML, Norden J, Kispert A, Chédotal A, Christoffels VM, Parnavelas JG. Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium. Circ Res 2013; 112(3):465-75; PMID:23255421; https://doi.org/10.1161/CIRCRESAHA.112.277426
  • Mommersteeg MT, Yeh ML, Parnavelas JG, Andrews WD. Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves. Cardiovasc Res 2015; 106(1):55-66; PMID:25691540; https://doi.org/10.1093/cvr/cvv040
  • Macias H, Moran A, Samara Y, Moreno M, Compton JE, Harburg G, Strickland P, Hinck L. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell 2011; 20(6):827-40; PMID:21664580; https://doi.org/10.1016/j.devcel.2011.05.012
  • Liu J, Zhang L, Wang D, Shen H, Jiang M, Mei P, Hayden PS, Sedor JR, Hu H. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev 2003; 120(9):1059-70; PMID:14550534; https://doi.org/10.1016/S0925-4773(03)00161-8
  • Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc Natl Acad Sci U S A 2003; 100(9):5217-22; PMID:12702769; https://doi.org/10.1073/pnas.0730709100
  • Domyan ET, Branchfield K, Gibson DA, Naiche LA, Lewandoski M, Tessier-Lavigne M, Ma L, Sun X. Roundabout receptors are critical for foregut separation from the body wall. Dev Cell 2013; 24(1):52-63; PMID:23328398; https://doi.org/10.1016/j.devcel.2012.11.018
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5):871-90; PMID:19945376; https://doi.org/10.1016/j.cell.2009.11.007
  • Nieto MA. Epithelial plasticity: A common theme in embryonic and cancer cells. Science 2013; 342(6159):1234850; PMID:24202173; https://doi.org/10.1126/science.1234850
  • Ballard MS, Hinck L. A roundabout way to cancer. Adv Cancer Res 2012; 114:187-235; PMID:22588058
  • Seeger M, Tear G, Ferres-Marco D, Goodman CS. Mutations affecting growth cone guidance in Drosophila: Genes necessary for guidance toward or away from the midline. Neuron 1993; 10(3):409-26; PMID:8461134; https://doi.org/10.1016/0896-6273(93)90330-T
  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 1998; 92(2):205-15; PMID:9458045; https://doi.org/10.1016/S0092-8674(00)80915-0
  • Zallen JA, Yi BA, Bargmann CI. The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 1998; 92(2):217-27; PMID:9458046; https://doi.org/10.1016/S0092-8674(00)80916-2
  • Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 2000; 103(7):1033-45; PMID:11163180; https://doi.org/10.1016/S0092-8674(00)00207-5
  • Simpson JH, Kidd T, Bland KS, Goodman CS. Short-range and long-range guidance by slit and its Robo receptors. Robo and Robo2 play distinct roles in midline guidance. Neuron 2000; 28(3):753-66; PMID:11163264; https://doi.org/10.1016/S0896-6273(00)00151-3
  • Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 2004; 117(2):157-69; PMID:15084255; https://doi.org/10.1016/S0092-8674(04)00303-4
  • Vargesson N, Luria V, Messina I, Erskine L, Laufer E. Expression patterns of Slit and Robo family members during vertebrate limb development. Mech Dev 2001; 106(1-2):175-80; PMID:11472852; https://doi.org/10.1016/S0925-4773(01)00430-0
  • Connor RM, Key B. Expression and role of Roundabout-1 in embryonic Xenopus forebrain. Dev Dyn 2002; 225(1):22-34; PMID:12203717; https://doi.org/10.1002/dvdy.10130
  • Lee JS, Ray R, Chien CB. Cloning and expression of three zebrafish roundabout homologs suggest roles in axon guidance and cell migration. Dev Dyn 2001; 221(2):216-30; PMID:11376489; https://doi.org/10.1002/dvdy.1136
  • Challa AK, Beattie CE, Seeger MA. Identification and characterization of roundabout orthologs in zebrafish. Mech Dev 2001; 101(1-2):249-53; PMID:11231085; https://doi.org/10.1016/S0925-4773(00)00570-0
  • Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002; 79(4):547-52; PMID:11944987; https://doi.org/10.1006/geno.2002.6745
  • Dickson BJ, Gilestro GF. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 2006; 22:651-75; PMID:17029581
  • Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261(1):251-67; PMID:12941633; https://doi.org/10.1016/S0012-1606(03)00258-6
  • Rothberg JM, Hartley DA, Walther Z, Artavanis-Tsakonas S. slit: An EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 1988; 55(6):1047-59; PMID:3144436; https://doi.org/10.1016/0092-8674(88)90249-8
  • Kidd T, Bland KS, Goodman CS. Slit is the midline repellent for the robo receptor in Drosophila. Cell 1999; 96(6):785-94; PMID:10102267; https://doi.org/10.1016/S0092-8674(00)80589-9
  • Chedotal A. Slits and their receptors. Adv Exp Med Biol 2007; 621:65-80; PMID:18269211
  • Morlot C, Thielens NM, Ravelli RB, Hemrika W, Romijn RA, Gros P, Cusack S, McCarthy AA. Structural insights into the Slit-Robo complex. Proc Natl Acad Sci U S A 2007; 104(38):14923-8; PMID:17848514; https://doi.org/10.1073/pnas.0705310104
  • Seiradake E, von Philipsborn AC, Henry M, Fritz M, Lortat-Jacob H, Jamin M, Hemrika W, Bastmeyer M, Cusack S, McCarthy AA. Structure and functional relevance of the Slit2 homodimerization domain. EMBO Rep 2009; 10(7):736-41; PMID:19498462; https://doi.org/10.1038/embor.2009.95
  • Liu D, Hou J, Hu X, Wang X, Xiao Y, Mou Y, De Leon H. Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ Res 2006; 98(4):480-9; PMID:16439689; https://doi.org/10.1161/01.RES.0000205764.85931.4b
  • Ordan E, Volk T. Amontillado is required for Drosophila Slit processing and for tendon-mediated muscle patterning. Biol Open 2016; 5(10):1530-4; PMID:27628033; https://doi.org/10.1242/bio.020636
  • Nguyen Ba-Charvet KT, Brose K, Ma L, Wang KH, Marillat V, Sotelo C, Tessier-Lavigne M, Chédotal A. Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. J Neurosci 2001; 21(12):4281-9; PMID:11404413
  • Ning Y, Sun Q, Dong Y, Xu W, Zhang W, Huang H, Li Q. Slit2-N inhibits PDGF-induced migration in rat airway smooth muscle cells: WASP and Arp2/3 involved. Toxicology 2011; 283(1):32-40; PMID:21315131; https://doi.org/10.1016/j.tox.2011.01.026
  • Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, et al. A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metab 2016; 23(3):454-66; PMID:26876562; https://doi.org/10.1016/j.cmet.2016.01.008
  • Lin YY, Yang CH, Sheu GT, Huang CY, Wu YC, Chuang SM, Fann MJ, Chang H, Lee H, Chang JT. A novel exon 15-deleted, splicing variant of Slit2 shows potential for growth inhibition in addition to invasion inhibition in lung cancer. Cancer 2011; 117(15):3404-15; PMID:21264840; https://doi.org/10.1002/cncr.25890
  • Davidson MR, Larsen JE, Yang IA, Hayward NK, Clarke BE, Duhig EE, Passmore LH, Bowman RV, Fong KM. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One 2010; 5(9):e12560; PMID:20838434; https://doi.org/10.1371/journal.pone.0012560
  • Small EM, Sutherland LB, Rajagopalan KN, Wang S, Olson EN. MicroRNA-218 regulates vascular patterning by modulation of Slit-Robo signaling. Circ Res 2010; 107(11):1336-44; PMID:20947829; https://doi.org/10.1161/CIRCRESAHA.110.227926
  • Punnamoottil B, Rinkwitz S, Giacomotto J, Svahn AJ, Becker TS. Motor neuron-expressed microRNAs 218 and their enhancers are nested within introns of Slit2/3 genes. Genesis 2015; 53(5):321-8; PMID:25864959; https://doi.org/10.1002/dvg.22852
  • Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84(3):869-901; PMID:15269339; https://doi.org/10.1152/physrev.00035.2003
  • Ratheesh A, Yap AS. A bigger picture: Classical cadherins and the dynamic actin cytoskeleton. Nat Rev Mol Cell Biol 2012; 13(10):673-9; PMID:22931853; https://doi.org/10.1038/nrm3431
  • Brieher WM, Yap AS. Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol 2013; 25(1):39-46; PMID:23127608; https://doi.org/10.1016/j.ceb.2012.10.010
  • Yonemura S. Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 2011; 23(5):515-22; PMID:21807490; https://doi.org/10.1016/j.ceb.2011.07.001
  • Ebnet K. Organization of multiprotein complexes at cell-cell junctions. Histochem Cell Biol 2008; 130(1):1-20; PMID:18365233; https://doi.org/10.1007/s00418-008-0418-7
  • Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: Role and clinical significance in cancer. Cancer Invest 2009; 27(10):1023-37; PMID:19909018; https://doi.org/10.3109/07357900902769749
  • Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res 2010; 8(5):629-42; PMID:20460404; https://doi.org/10.1158/1541-7786.MCR-10-0139
  • Paredes J, Figueiredo J, Albergaria A, Oliveira P, Carvalho J, Ribeiro AS, Caldeira J, Costa AM, Simões-Correia J, Oliveira MJ, et al. Epithelial E- and P-cadherins: Role and clinical significance in cancer. Biochim Biophys Acta 2012; 1826(2):297-311; PMID:22613680
  • Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110(6):673-87; PMID:12297042; https://doi.org/10.1016/S0092-8674(02)00971-6
  • Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol 2007; 25:619-47; PMID:17201681
  • Wolfenson H, Lavelin I, Geiger B. Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 2013; 24(5):447-58; PMID:23484852; https://doi.org/10.1016/j.devcel.2013.02.012
  • Martin AC. Pulsation and stabilization: Contractile forces that underlie morphogenesis. Dev Biol 2010; 341(1):114-25; PMID:19874815; https://doi.org/10.1016/j.ydbio.2009.10.031
  • Hoffman BD, Yap AS. Towards a dynamic understanding of cadherin-based mechanobiology. Trends Cell Biol 2015; 25(12):803-14; PMID:26519989; https://doi.org/10.1016/j.tcb.2015.09.008
  • Heasman SJ, Ridley AJ. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9(9):690-701; PMID:18719708; https://doi.org/10.1038/nrm2476
  • Hall A. Rho family GTPases. Biochem Soc Trans 2012; 40(6):1378-82; PMID:23176484; https://doi.org/10.1042/BST20120103
  • Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. Semin Cell Dev Biol 2014; 36:194-203; PMID:25223584
  • Hoelzle MK, Svitkina T. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 2012; 23(2):310-23; PMID:22090347; https://doi.org/10.1091/mbc.E11-08-0719
  • Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; PMID:28363828; https://doi.org/10.1016/j.yexcr.2017.03.053
  • Ypsilanti AR, Zagar Y, Chedotal A. Moving away from the midline: new developments for Slit and Robo. Development 2010; 137(12):1939-52; PMID:20501589; https://doi.org/10.1242/dev.044511
  • Dressler GR. Advances in early kidney specification, development and patterning. Development 2009; 136(23):3863-74; PMID:19906853; https://doi.org/10.1242/dev.034876
  • Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 2004; 6(5):709-17; PMID:15130495; https://doi.org/10.1016/S1534-5807(04)00108-X
  • Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, et al. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 2015; 134(8):905-16; PMID:26026792; https://doi.org/10.1007/s00439-015-1570-5
  • Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol 2015; 404(2):88-102; PMID:26116176; https://doi.org/10.1016/j.ydbio.2015.05.023
  • Scott RP, Quaggin SE. Review series: The cell biology of renal filtration. J Cell Biol 2015; 209(2):199-210; PMID:25918223; https://doi.org/10.1083/jcb.201410017
  • Farquhar MG, Wissig SL, Palade GE. Glomerular permeability. I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med 1961; 113:47-66; PMID:13698249
  • Caulfield JP, Farquhar MG. The permeability of glomerular capillaries to graded dextrans. Identification of the basement membrane as the primary filtration barrier. J Cell Biol 1974; 63(3):883-903; PMID:4612049; https://doi.org/10.1083/jcb.63.3.883
  • Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol 1974; 60(2):423-33; PMID:4204974; https://doi.org/10.1083/jcb.60.2.423
  • Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev 2003; 83(1):253-307; PMID:12506131; https://doi.org/10.1152/physrev.00020.2002
  • Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: Regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007; 17(9):428-37; PMID:17804239; https://doi.org/10.1016/j.tcb.2007.06.006
  • Krolewski AS, Bonventre JV. High risk of ESRD in type 1 diabetes: New strategies are needed to retard progressive renal function decline. Semin Nephrol 2012; 32(5):407-14; PMID:23062980; https://doi.org/10.1016/j.semnephrol.2012.07.002
  • Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestilä M, Jalanko H, Holmberg C, Tryggvason K. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci U S A 1999; 96(14):7962-7; PMID:10393930; https://doi.org/10.1073/pnas.96.14.7962
  • Done SC, Takemoto M, He L, Sun Y, Hultenby K, Betsholtz C, Tryggvason K. Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int 2008; 73(6):697-704; PMID:18046313; https://doi.org/10.1038/sj.ki.5002707
  • Hamano Y, Grunkemeyer JA, Sudhakar A, Zeisberg M, Cosgrove D, Morello R, Lee B, Sugimoto H, Kalluri R. Determinants of vascular permeability in the kidney glomerulus. J Biol Chem 2002; 277(34):31154-62; PMID:12039968; https://doi.org/10.1074/jbc.M204806200
  • Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F, Li H, Huang H, Larose L, Li SS, Takano T, et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 2006; 440(7085):818-23; PMID:16525419; https://doi.org/10.1038/nature04662
  • Blasutig IM, New LA, Thanabalasuriar A, Dayarathna TK, Goudreault M, Quaggin SE, Li SS, Gruenheid S, Jones N, Pawson T. Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol Cell Biol 2008; 28(6):2035-46; PMID:18212058; https://doi.org/10.1128/MCB.01770-07
  • New LA, Keyvani Chahi A, Jones N. Direct regulation of nephrin tyrosine phosphorylation by Nck adaptor proteins. J Biol Chem 2013; 288(3):1500-10; PMID:23188823; https://doi.org/10.1074/jbc.M112.439463
  • Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, Wang H, McLaughlin M, Mangos S, Kalluri R, et al. Inhibitory effects of Robo2 on nephrin: A crosstalk between positive and negative signals regulating podocyte structure. Cell Rep 2012; 2(1):52-61; PMID:22840396; https://doi.org/10.1016/j.celrep.2012.06.002
  • Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol 2013; 9(4):200-10; PMID:23338211; https://doi.org/10.1038/nrneph.2012.291
  • Giannone G, Mege RM, Thoumine O. Multi-level molecular clutches in motile cell processes. Trends Cell Biol 2009; 19(9):475-86; PMID:19716305; https://doi.org/10.1016/j.tcb.2009.07.001
  • Hirata H, Sokabe M, Lim CT. Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Prog Mol Biol Transl Sci 2014; 126:135-54; PMID:25081617
  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10(11):778-90; PMID:19851336; https://doi.org/10.1038/nrm2786
  • Johnstone DB, Zhang J, George B, Léon C, Gachet C, Wong H, Parekh R, Holzman LB. Podocyte-specific deletion of Myh9 encoding nonmuscle myosin heavy chain 2A predisposes mice to glomerulopathy. Mol Cell Biol 2011; 31(10):2162-70; PMID:21402784; https://doi.org/10.1128/MCB.05234-11
  • Miura K, Kurihara H, Horita S, Chikamoto H, Hattori M, Harita Y, Tsurumi H, Kajiho Y, Sawada Y, Sasaki S, et al. Podocyte expression of nonmuscle myosin heavy chain-IIA decreases in idiopathic nephrotic syndrome, especially in focal segmental glomerulosclerosis. Nephrol Dial Transplant 2013; 28(12):2993-3003; PMID:24042022; https://doi.org/10.1093/ndt/gft350
  • Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, et al. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016; 1(19):e86934; PMID:27882344; https://doi.org/10.1172/jci.insight.86934
  • Mui KL, Chen CS, Assoian RK. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci 2016; 129(6):1093-100; PMID:26919980; https://doi.org/10.1242/jcs.183699
  • Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, Tang H, Wen L, Brady-Kalnay SM, Mei L, Wu JY, et al. Signal transduction in neuronal migration: Roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 2001; 107(2):209-21; PMID:11672528; https://doi.org/10.1016/S0092-8674(01)00530-X
  • Yiin JJ, Hu B, Jarzynka MJ, Feng H, Liu KW, Wu JY, Ma HI, Cheng SY. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity. Neuro Oncol 2009; 11(6):779-89; PMID:20008733; https://doi.org/10.1215/15228517-2009-017
  • Tseng RC, Chang JM, Chen JH, Huang WR, Tang YA, Kuo IY, Yan JJ, Lai WW, Wang YC. Deregulation of SLIT2-mediated Cdc42 activity is associated with esophageal cancer metastasis and poor prognosis. J Thorac Oncol 2015; 10(1):189-98; PMID:25490006; https://doi.org/10.1097/JTO.0000000000000369
  • Bhattacharya R, Mukherjee N, Dasgupta H, Islam MS, Alam N, Roy A, Das P, Roychoudhury S, Panda CK. Frequent alterations of SLIT2-ROBO1-CDC42 signalling pathway in breast cancer: Clinicopathological correlation. J Genet 2016; 95(3):551-63; PMID:27659325; https://doi.org/10.1007/s12041-016-0678-2
  • Feng Y, Feng L, Yu D, Zou J, Huang Z. srGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer. J Exp Clin Cancer Res 2016; 35(1):191; PMID:27923383; https://doi.org/10.1186/s13046-016-0443-7 10.1186/s13046-016-0469-x
  • Shiau CE, Bronner-Fraser M. N-cadherin acts in concert with Slit1-Robo2 signaling in regulating aggregation of placode-derived cranial sensory neurons. Development 2009; 136(24):4155-64; PMID:19934013; https://doi.org/10.1242/dev.034355
  • Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MF. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4(10):798-805; PMID:12360290; https://doi.org/10.1038/ncb858
  • Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 2007; 9(8):883-92; PMID:17618275; https://doi.org/10.1038/ncb1614
  • Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. Embo J 1995; 14(24):6107-15; PMID:8557030
  • Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: Protein interactions and their implications for cadherin function. J Cell Biochem 1996; 61(4):514-23; PMID:8806074; https://doi.org/10.1002/(SICI)1097-4644(19960616)61:4%3c514::AID-JCB4%3e3.3.CO;2-D 10.1002/(SICI)1097-4644(19960616)61:4%3c514::AID-JCB4%3e3.0.CO;2-R
  • Pokutta S, Weis WI. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 2007; 23:237-61; PMID:17539752
  • Prasad A, Paruchuri V, Preet A, Latif F, Ganju RK. Slit-2 induces a tumor-suppressive effect by regulating beta-catenin in breast cancer cells. J Biol Chem 2008; 283(39):26624-33; PMID:18611862; https://doi.org/10.1074/jbc.M800679200
  • Tseng RC, Lee SH, Hsu HS, Chen BH, Tsai WC, Tzao C, Wang YC. SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis. Cancer Res 2010; 70(2):543-51; PMID:20068157; https://doi.org/10.1158/0008-5472.CAN-09-2084
  • Grone J, Doebler O, Loddenkemper C, Hotz B, Buhr HJ, Bhargava S. Robo1/Robo4: Differential expression of angiogenic markers in colorectal cancer. Oncol Rep 2006; 15(6):1437-43; PMID:16685377
  • Wang B, Xiao Y, Ding BB, Zhang N, Yuan Xb, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 2003; 4(1):19-29; PMID:12892710; https://doi.org/10.1016/S1535-6108(03)00164-8
  • Zhou WJ, Geng ZH, Chi S, Zhang W, Niu XF, Lan SJ, Ma L, Yang X, Wang LJ, Ding YQ, et al. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res 2011; 21(4):609-26; PMID:21283129; https://doi.org/10.1038/cr.2011.17
  • Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tsunoda T, Nakatsuru S, et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14(20):6487-95; PMID:18927288; https://doi.org/10.1158/1078-0432.CCR-08-1086
  • Vieira AF, Paredes J. P-cadherin and the journey to cancer metastasis. Mol Cancer 2015; 14:178; PMID:26438065
  • Ribeiro AS, Sousa B, Carreto L, Mendes N, Nobre AR, Ricardo S, Albergaria A, Cameselle-Teijeiro JF, Gerhard R, Söderberg O, et al. P-cadherin functional role is dependent on E-cadherin cellular context: A proof of concept using the breast cancer model. J Pathol 2013; 229(5):705-18; PMID:23180380; https://doi.org/10.1002/path.4143
  • Sarrio D, Palacios J, Hergueta-Redondo M, Gomez-Lopez G, Cano A, Moreno-Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 2009; 9:74; PMID:19257890
  • Bauer K, Dowejko A, Bosserhoff AK, Reichert TE, Bauer R. Slit-2 facilitates interaction of P-cadherin with Robo-3 and inhibits cell migration in an oral squamous cell carcinoma cell line. Carcinogenesis 2011; 32(6):935-43; PMID:21459757; https://doi.org/10.1093/carcin/bgr059
  • Reynolds LP, Killilea SD, Redmer DA. Angiogenesis in the female reproductive system. Faseb J 1992; 6(3):886-92; PMID:1371260
  • Yadav L, Puri N, Rastogi V, Satpute P, Sharma V. Tumour Angiogenesis and Angiogenic Inhibitors: A Review. J Clin Diagn Res 2015; 9(6):XE01-XE05; PMID:26266204
  • Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5):646-74; PMID:21376230; https://doi.org/10.1016/j.cell.2011.02.013
  • Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1(2):149-53; PMID:7585012; https://doi.org/10.1038/nm0295-149
  • Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, Hanahan D. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 1996; 93(5):2002-7; PMID:8700875; https://doi.org/10.1073/pnas.93.5.2002
  • Klagsbrun M, Eichmann A. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 2005; 16(4-5):535-48; PMID:15979925; https://doi.org/10.1016/j.cytogfr.2005.05.002
  • Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2010; 2(5):a001875; PMID:20452960; https://doi.org/10.1101/cshperspect.a001875
  • Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L. Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 2009; 114(19):4300-9; PMID:19741192; https://doi.org/10.1182/blood-2008-12-193326
  • Guijarro-Munoz I, Cuesta AM, Alvarez-Cienfuegos A, Geng JG, Alvarez-Vallina L, Sanz L. The axonal repellent Slit2 inhibits pericyte migration: Potential implications in angiogenesis. Exp Cell Res 2012; 318(4):371-78; PMID:22198087; https://doi.org/10.1016/j.yexcr.2011.12.005
  • Zhao H, Anand AR, Ganju RK. Slit2-Robo4 pathway modulates lipopolysaccharide-induced endothelial inflammation and its expression is dysregulated during endotoxemia. J Immunol 2014; 192(1):385-93; PMID:24272999; https://doi.org/10.4049/jimmunol.1302021
  • Wang LJ, Zhao Y, Han B, Ma YG, Zhang J, Yang DM, Mao JW, Tang FT, Li WD, Yang Y, Wang R, et al. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci 2008; 99(3):510-7; PMID:18201275; https://doi.org/10.1111/j.1349-7006.2007.00721.x
  • Li S, Huang L, Sun Y, Bai Y, Yang F, Yu W, Li F, Zhang Q, Wang B, Geng JG. Slit2 Promotes Angiogenic Activity Via the Robo1-VEGFR2-ERK1/2 Pathway in Both In Vivo and in vitro Studies. Invest Ophthalmol Vis Sci 2015; 56(9):5210-7; PMID:26244297; https://doi.org/10.1167/iovs-14-16184
  • Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Heath VL, Bicknell R. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. Faseb J 2009; 23(2):513-22; PMID:18948384; https://doi.org/10.1096/fj.07-098269
  • Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP, Sukhatme VP. Magic roundabout, a tumor endothelial marker: Expression and signaling. Biochem Biophys Res Commun 2005; 332(2):533-41; PMID:15894287; https://doi.org/10.1016/j.bbrc.2005.03.250
  • Marlow R, Binnewies M, Sorensen LK, Monica SD, Strickland P, Forsberg EC, Li DY, Hinck L. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc Natl Acad Sci U S A 2010; 107(23):10520-5; PMID:20498081; https://doi.org/10.1073/pnas.1001896107
  • Enomoto S, Mitsui K, Kawamura T, Iwanari H, Daigo K, Horiuchi K, Minami T, Kodama T, Hamakubo T. Suppression of Slit2/Robo1 mediated HUVEC migration by Robo4. Biochem Biophys Res Commun 2016; 469(4):797-802; PMID:26713366; https://doi.org/10.1016/j.bbrc.2015.12.075
  • Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. Faseb J 2005; 19(1):121-23; PMID:15486058
  • Steigemann P, Molitor A, Fellert S, Jackle H, Vorbruggen G. Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr Biol 2004; 14(3):225-30; PMID:14761655; https://doi.org/10.1016/j.cub.2004.01.006
  • Hu H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nat Neurosci 2001; 4(7):695-701; PMID:11426225
  • Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 2008; 14(4):448-53; PMID:18345009
  • Jones CA, Nishiya N, London NR, Zhu W, Sorensen LK, Chan AC, Lim CJ, Chen H, Zhang Q, Schultz PG, et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 2009; 11(11):1325-31; PMID:19855388
  • London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2(23):23ra19; PMID:20375003
  • Zhang X, Yu J, Kuzontkoski PM, Zhu W, Li DY, Groopman JE. Slit2/Robo4 signaling modulates HIV-1 gp120-induced lymphatic hyperpermeability. PLoS Pathog 2012; 8(1):e1002461; PMID:22241990
  • Koch AW, Mathivet T, Larrivee B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, et al. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 2011; 20(1):33-46; PMID:21238923
  • Zhang F, Prahst C, Mathivet T, Pibouin-Fragner L, Zhang J, Genet G, Tong R, Dubrac A, Eichmann A. The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. Nat Commun 2016; 7:13517; PMID:27882935
  • Yang YC, Chen PN, Wang SY, Liao CY, Lin YY, Sun SR, Chiu CL, Hsieh YS, Shieh JC, Chang JT. The differential roles of Slit2-exon 15 splicing variants in angiogenesis and HUVEC permeability. Angiogenesis 2015; 18(3):301-12; PMID:26021305
  • Santiago-Martinez E, Soplop NH, Patel R, Kramer SG. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 2008; 182(2):241-8; PMID:18663139
  • Han HX, Geng JG. Over-expression of Slit2 induces vessel formation and changes blood vessel permeability in mouse brain. Acta Pharmacol Sin 2011; 32(11):1327-36; PMID:21986575
  • Li JC, Han L, Wen YX, Yang YX, Li S, Li XS, Zhao CJ, Wang TY, Chen H, Liu Y, et al. Increased permeability of the blood-brain barrier and Alzheimer's disease-like alterations in slit-2 transgenic mice. J Alzheimers Dis 2015; 43(2):535-48; PMID:25114073
  • Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD. Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 2012; 76(5):931-44; PMID:23217742
  • Delloye-Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, Kindbeiter K, Yoshida Y, Zagar Y, Kong Y, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci 2015; 18(1):36-45; PMID:25485759
  • Dascenco D, Erfurth ML, Izadifar A, Song M, Sachse S, Bortnick R, Urwyler O, Petrovic M, Ayaz D, He H, et al. Slit and receptor tyrosine phosphatase 69D confer spatial specificity to axon branching via Dscam1. Cell 2015; 162(5):1140-54; PMID:26317474

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.