1,249
Views
28
CrossRef citations to date
0
Altmetric
Review

Animal models for studying epithelial barriers in neonatal necrotizing enterocolitis, inflammatory bowel disease and colorectal cancer

ORCID Icon, &
Article: e1356901 | Received 03 May 2017, Accepted 13 Jul 2017, Published online: 10 Aug 2017

References

  • Lee SH. Intestinal permeability regulation by tight junction: Implication on Inflamm Bowel Dis.. Intest Res. 2015; 13:11-8. https://doi.org/10.5217/ir.2015.13.1.11. PMID:25691839
  • Shen L, Su L, Turner JR. Mechanisms and functional implications of intestinal barrier defects. Dig Dis. 2009; 27:443-9. https://doi.org/10.1159/000233282. PMID:19897958
  • Ciccocioppo R, Finamore A, Ara C, Di Sabatino A, Mengheri E, Corazza GR. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol. 2006; 125:502-11. https://doi.org/10.1309/DTYRA91G8R0KTM8M. PMID:16627260
  • Das P, Goswami P, Das TK, Nag T, Sreenivas V, Ahuja V, Panda SK, Gupta SD, Makharia GK. Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis, and tuberculosis: A new perspective. Virchows Arch. 2012; 460:261-70. https://doi.org/10.1007/s00428-012-1195-1. PMID:22297703
  • Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011; 286:31263-71. https://doi.org/10.1074/jbc.M111.238147. PMID:21771795
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993; 123:1777-88. https://doi.org/10.1083/jcb.123.6.1777. PMID:8276896
  • Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013; 93:525-69. https://doi.org/10.1152/physrev.00019.2012. PMID:23589827
  • Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers. 2013; 1:e24978. https://doi.org/10.4161/tisb.24978. PMID:24478939
  • Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, Beauchamp RD, Singh AB, Dhawan P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014; 63:622-34. https://doi.org/10.1136/gutjnl-2012-304241
  • Nishida M, Yoshida M, Nishiumi S, Furuse M, Azuma T. Claudin-2 regulates colorectal inflammation via myosin light chain kinase-dependent signaling. Dig Dis Sci. 2013; 58:1546-59. https://doi.org/10.1007/s10620-012-2535-3
  • Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, Cao J, Chen YH. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 2012; 142:305-15. https://doi.org/10.1053/j.gastro.2011.10.025. PMID:22044670
  • Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, et al. Megaintestine in claudin-15-deficient mice. Gastroenterology. 2008; 134:523-34. https://doi.org/10.1053/j.gastro.2007.11.040. PMID:18242218
  • Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, Yashiro K, Tsukita S, Hamada H. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol. 2012; 371:136-45. https://doi.org/10.1016/j.ydbio.2012.07.005. PMID:22819673
  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994; 127:1617-26. https://doi.org/10.1083/jcb.127.6.1617
  • Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol. 2005; 288:C1231-41. https://doi.org/10.1152/ajpcell.00581.2004. PMID:15689410
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000; 11:4131-42. https://doi.org/10.1091/mbc.11.12.4131
  • Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M. Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta. 2005; 1669:34-42. https://doi.org/10.1016/j.bbamem.2005.01.008. PMID:15842997
  • Mir H, Meena AS, Chaudhry KK, Shukla PK, Gangwar R, Manda B, Padala MK, Shen L, Turner JR, Dietrich P, et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice. Biochim Biophys Acta. 2016; 1860:765-74. https://doi.org/10.1016/j.bbagen.2015.12.013. PMID:26721332
  • Coeffier M, Gloro R, Boukhettala N, Aziz M, Lecleire S, Vandaele N, Antonietti M, Savoye G, Bôle-Feysot C, Déchelotte P, et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol. 2010; 105:1181-8. https://doi.org/10.1038/ajg.2009.700. PMID:19997094
  • Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998; 142:117-27. https://doi.org/10.1083/jcb.142.1.117
  • Jia W, Martin TA, Zhang G, Jiang WG. Junctional adhesion molecules in cerebral endothelial tight junction and brain metastasis. Anticancer Res. 2013; 33:2353-9. PMID:23749882
  • Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001; 276:2733-41. https://doi.org/10.1074/jbc.M005458200. PMID:11053409
  • Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med. 2002; 196:679-91. https://doi.org/10.1084/jem.20020267
  • Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol. 2003; 23:4267-82. https://doi.org/10.1128/MCB.23.12.4267-4282.2003
  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000; 275:20520-6. https://doi.org/10.1074/jbc.M905251199
  • Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA. Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood. 2002; 100:2479-86. https://doi.org/10.1182/blood-2001-11-0098
  • Mandell KJ, Babbin BA, Nusrat A, Parkos CA. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem. 2005; 280:11665-74. https://doi.org/10.1074/jbc.M412650200
  • Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, et al. JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med. 2007; 204:3067-76. https://doi.org/10.1084/jem.20071416
  • Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, Doni A, Fantini M, Sturm A, Borroni E, Repici A, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008; 135:173-84. https://doi.org/10.1053/j.gastro.2008.04.002
  • Vetrano S, Danese S. The role of JAM-A in inflammatory bowel disease: Unrevealing the ties that bind. Ann N Y Acad Sci. 2009; 1165:308-13. https://doi.org/10.1111/j.1749-6632.2009.04045.x. PMID:19538321
  • Wilcz-Villega EM, McClean S, O'Sullivan MA. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: Implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol. 2013; 108:1140-51. https://doi.org/10.1038/ajg.2013.92. PMID:23588236
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and −2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998; 141:1539-50. https://doi.org/10.1083/jcb.141.7.1539
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J Cell Biol. 2002; 156:1099-111. https://doi.org/10.1083/jcb.200110122
  • Pope JL, Ahmad R, Bhat AA, Washington MK, Singh AB, Dhawan P. Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer. 2014; 13:167. https://doi.org/10.1186/1476-4598-13-167
  • Karabulut M, Alis H, Bas K, Karabulut S, Afsar CU, Oguz H, Gunaldi M, Akarsu C, Kones O, Aykan NF. Clinical significance of serum claudin-1 and claudin-7 levels in patients with colorectal cancer. Mol Clin Oncol. 2015; 3:1255-67
  • Nakagawa S, Miyoshi N, Ishii H, Mimori K, Tanaka F, Sekimoto M, Doki Y, Mori M. Expression of CLDN1 in colorectal cancer: A novel marker for prognosis. Int J Oncol. 2011; 39:791-6
  • Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y. Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res. 2001; 12:469-76. https://doi.org/10.3727/096504001108747477
  • Bhat AA, Ahmad R, Uppada SB, Singh AB, Dhawan P. Claudin-1 promotes TNF-alpha-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res. 2016; 349:119-27. https://doi.org/10.1016/j.yexcr.2016.10.005
  • Singh AB, Sharma A, Dhawan P. Claudin-1 expression confers resistance to anoikis in colon cancer cells in a Src-dependent manner. Carcinogenesis. 2012; 33:2538-47. https://doi.org/10.1093/carcin/bgs275
  • Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 2001; 153:263-72. https://doi.org/10.1083/jcb.153.2.263
  • Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, et al. Tight junction proteins claudin-2 and −12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008; 19:1912-21. https://doi.org/10.1091/mbc.E07-09-0973
  • Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, Günzel D, Fromm M. Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci. 2010; 123:1913-21. https://doi.org/10.1242/jcs.060665
  • Aung PP, Mitani Y, Sanada Y, Nakayama H, Matsusaki K, Yasui W. Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas. Virchows Arch. 2006; 448:428-34. https://doi.org/10.1007/s00428-005-0120-2
  • Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S. Loss of claudin-15, but not claudin-2, causes Na+ deficiency and glucose malabsorption in mouse small intestine. Gastroenterology. 2011; 140:913-23. https://doi.org/10.1053/j.gastro.2010.08.006
  • Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 2015; 3:e977176. https://doi.org/10.4161/21688370.2014.977176
  • Ahmad R, Chaturvedi R, Olivares-Villagomez D, Habib T, Asim M, Shivesh P, Polk DB, Wilson KT, Washington MK, Van Kaer L, et al. Targeted colonic claudin-2 expression renders resistance to epithelial injury, induces immune suppression, and protects from colitis. Mucosal Immunol. 2014; 7:1340-53. https://doi.org/10.1038/mi.2014.21
  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima T, Yamashita T, Sawada N. Differential expression and subcellular localization of claudin-7, −8, −12, −13, and −15 along the mouse intestine. J Histochem Cytochem. 2006; 54:933-44. https://doi.org/10.1369/jhc.6A6944.2006. PMID:16651389
  • Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A, Tsukita S. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut. 2015; 64:1529-38. https://doi.org/10.1136/gutjnl-2014-308419
  • Wongdee K, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N. Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. J Mol Histol. 2013; 44:103-9. https://doi.org/10.1007/s10735-012-9451-x
  • Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013; 144:369-80. https://doi.org/10.1053/j.gastro.2012.10.035
  • Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion molecule: More than a carcinoma marker and adhesion molecule. Am J Pathol. 2007; 171:386-95. https://doi.org/10.2353/ajpath.2007.070152
  • Schnell U, Cirulli V, Giepmans BN. EpCAM: Structure and function in health and disease. Biochim Biophys Acta. 2013; 1828:1989-2001. https://doi.org/10.1016/j.bbamem.2013.04.018
  • Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007; 96:417-23. https://doi.org/10.1038/sj.bjc.6603494
  • Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, Zlotkin SH, Pencharz PB, Ngan BY, Libiger O, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 2008; 135:429-37. https://doi.org/10.1053/j.gastro.2008.05.036
  • Mueller JL, McGeough MD, Pena CA, Sivagnanam M. Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol. 2014; 306:G278-88. https://doi.org/10.1152/ajpgi.00286.2013
  • Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M, Alberti S. mTrop1/Epcam knockout mice develop congenital tufting enteropathy through dysregulation of intestinal E-cadherin/beta-catenin. PloS One. 2012; 7:e49302. https://doi.org/10.1371/journal.pone.0049302
  • Walsh MC, Kliegman RM. Necrotizing enterocolitis: Treatment based on staging criteria. Pediatr Clin North Am. 1986; 33:179-201. https://doi.org/10.1016/S0031-3955(16)34975-6
  • Ballance WA, Dahms BB, Shenker N, Kliegman RM. Pathology of neonatal necrotizing enterocolitis: A ten-year experience. J Pediatr. 1990; 117:S6-13. https://doi.org/10.1016/S0022-3476(05)81124-2
  • Emami CN, Petrosyan M, Giuliani S, Williams M, Hunter C, Prasadarao NV, Ford HR. Role of the host defense system and intestinal microbial flora in the pathogenesis of necrotizing enterocolitis. Surg Infect. 2009; 10:407-17. https://doi.org/10.1089/sur.2009.054
  • Lu P, Sodhi CP, Jia H, Shaffiey S, Good M, Branca MF, Hackam DJ. Animal models of gastrointestinal and liver diseases. Animal models of necrotizing enterocolitis: Pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol. 2014; 306:G917-28. https://doi.org/10.1152/ajpgi.00422.2013
  • Barlow B, Santulli TV. Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery. 1975; 77:687-90
  • Caplan MS, Hedlund E, Adler L, Hsueh W. Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis. Pediatr Pathol. 1994; 14:1017-28. https://doi.org/10.3109/15513819409037698
  • Nadler EP, Dickinson E, Knisely A, Zhang XR, Boyle P, Beer-Stolz D, Watkins SC, Ford HR. Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. J Surg Res. 2000; 92:71-7. https://doi.org/10.1006/jsre.2000.5877
  • Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, Thomson RB, Soliman A, Arditi M, Caplan MS. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol. 2006; 177:3273-82. https://doi.org/10.4049/jimmunol.177.5.3273
  • Guner YS, Franklin AL, Chokshi NK, Castle SL, Pontarelli E, Wang J, Wang L, Prasadarao NV, Upperman JS, Grishin AV, et al. P-glycoprotein induction by breast milk attenuates intestinal inflammation in experimental necrotizing enterocolitis. Lab Invest. 2011; 91:1668-79. https://doi.org/10.1038/labinvest.2011.113
  • Leaphart CL, Qureshi F, Cetin S, Li J, Dubowski T, Baty C, Beer-Stolz D, Guo F, Murray SA, Hackam DJ. Interferon-gamma inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology. 2007; 132:2395-411. https://doi.org/10.1053/j.gastro.2007.03.029
  • Garg PM, Tatum R, Ravisankar S, Shekhawat PS, Chen YH. Necrotizing enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury, and disruption of renal tight junction proteins. Pediatr Res. 2015; 78:527-32. https://doi.org/10.1038/pr.2015.146
  • Oosterloo BC, Premkumar M, Stoll B, Olutoye O, Thymann T, Sangild PT, Burrin DG. Dual purpose use of preterm piglets as a model of pediatric GI disease. Vet Immunol Immunopathol. 2014; 159:156-65. https://doi.org/10.1016/j.vetimm.2014.02.012
  • Sibbons P, Spitz L, van Velzen D, Bullock GR. Relationship of birth weight to the pathogenesis of necrotizing enterocolitis in the neonatal piglet. Pediatr Pathol. 1988; 8:151-62. https://doi.org/10.3109/15513818809022292
  • Cohen IT, Nelson SD, Moxley RA, Hirsh MP, Counihan TC, Martin RF. Necrotizing enterocolitis in a neonatal piglet model. J Pediatr Surg. 1991; 26:598-601. https://doi.org/10.1016/0022-3468(91)90716-7
  • Sangild PT, Petersen YM, Schmidt M, Elnif J, Petersen TK, Buddington RK, Greisen G, Michaelsen KF, Burrin DG. Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs. J Nutr. 2002; 132:3786-94
  • Sodhi C, Richardson W, Gribar S, Hackam DJ. The development of animal models for the study of necrotizing enterocolitis. Dis Models Mech. 2008; 1:94-8. https://doi.org/10.1242/dmm.000315
  • Halpern MD, Denning PW. The role of intestinal epithelial barrier function in the development of NEC. Tissue Barriers. 2015; 3:e1000707. https://doi.org/10.1080/21688370.2014.1000707
  • Rentea RM, Liedel JL, Welak SR, Cassidy LD, Mayer AN, Pritchard KA, Jr., Oldham KT, Gourlay DM. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg. 2012; 47:1135-42. https://doi.org/10.1016/j.jpedsurg.2012.03.018
  • Shiou SR, Yu Y, Chen S, Ciancio MJ, Petrof EO, Sun J, Claud EC. Erythropoietin protects intestinal epithelial barrier function and lowers the incidence of experimental neonatal necrotizing enterocolitis. J Biol Chem. 2011; 286:12123-32. https://doi.org/10.1074/jbc.M110.154625
  • Hogberg N, Stenback A, Carlsson PO, Wanders A, Lilja HE. Genes regulating tight junctions and cell adhesion are altered in early experimental necrotizing enterocolitis. J Pediatr Surg 2013; 48:2308-12. https://doi.org/10.1016/j.jpedsurg.2013.06.027
  • Clark JA, Doelle SM, Halpern MD, Saunders TA, Holubec H, Dvorak K, Boitano SA, Dvorak B. Intestinal barrier failure during experimental necrotizing enterocolitis: Protective effect of EGF treatment. Am J Physiol Gastrointest Liver Physiol. 2006; 291:G938-49. https://doi.org/10.1152/ajpgi.00090.2006
  • Ling X, Linglong P, Weixia D, Hong W. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model. PloS One. 2016; 11:e0161635. https://doi.org/10.1371/journal.pone.0161635
  • Hunter CJ, Upperman JS, Ford HR, Camerini V. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr Res. 2008; 63:117-23. https://doi.org/10.1203/PDR.0b013e31815ed64c
  • Bergmann KR, Liu SX, Tian R, Kushnir A, Turner JR, Li HL, Chou PM, Weber CR, De Plaen IG. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol. 2013; 182:1595-606. https://doi.org/10.1016/j.ajpath.2013.01.013
  • Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY. Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2007; 292:G590-8. https://doi.org/10.1152/ajpgi.00252.2006
  • Clayburgh DR, Rosen S, Witkowski ED, Wang F, Blair S, Dudek S, Garcia JG, Alverdy JC, Turner JR. A differentiation-dependent splice variant of myosin light chain kinase, MLCK1, regulates epithelial tight junction permeability. J Biol Chem. 2004; 279:55506-13. https://doi.org/10.1074/jbc.M408822200
  • Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock. 2003; 19:229-37. https://doi.org/10.1097/00024382-200303000-00006
  • Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006; 55:1512-20. https://doi.org/10.1136/gut.2005.085373
  • Heiskala M, Peterson PA, Yang Y. The roles of claudin superfamily proteins in paracellular transport. Traffic. 2001; 2:93-8. https://doi.org/10.1034/j.1600-0854.2001.020203.x
  • Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol. 2014; 20:1165-79. https://doi.org/10.3748/wjg.v20.i5.1165
  • Oshitani N, Watanabe K, Nakamura S, Fujiwara Y, Higuchi K, Arakawa T. Dislocation of tight junction proteins without F-actin disruption in inactive Crohn's disease. Int J Mol Med. 2005; 15:407-10
  • Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007; 56:61-72. https://doi.org/10.1136/gut.2006.094375
  • Yamamoto-Furusho JK, Mendivil EJ, Fonseca-Camarillo G. Differential expression of occludin in patients with ulcerative colitis and healthy controls. Inflamm Bowel Dis. 2012; 18:E1999. https://doi.org/10.1002/ibd.22835
  • Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Invest. 2005; 85:1139-62. https://doi.org/10.1038/labinvest.3700316
  • Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest. 2008; 88:1110-20. https://doi.org/10.1038/labinvest.2008.78
  • Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N, Haier J, Bruewer M. Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: Upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int J Colorectal Dis. 2009; 24:361-8. https://doi.org/10.1007/s00384-009-0653-y
  • Stio M, Retico L, Annese V, Bonanomi AG. Vitamin D regulates the tight-junction protein expression in active ulcerative colitis. Scand J Gastroenterol. 2016; 51:1-7
  • Zwiers A, Fuss IJ, Leijen S, Mulder CJ, Kraal G, Bouma G. Increased expression of the tight junction molecule claudin-18 A1 in both experimental colitis and ulcerative colitis. Inflamm Bowel Dis. 2008; 14:1652-9. https://doi.org/10.1002/ibd.20695
  • Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RR. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015; 7:29. https://doi.org/10.1186/s13099-015-0076-y
  • Bailey RW, Bourne EJ. Intracellular glycosidases of dextran-producing bacteria. Nature. 1961; 191:277-8. https://doi.org/10.1038/191277a0
  • Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990; 98:694-702. https://doi.org/10.1016/0016-5085(90)90290-H
  • Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993; 69:238-49
  • Lund PK, Zuniga CC. Intestinal fibrosis in human and experimental inflammatory bowel disease. Curr Opin Gastroenterol. 2001; 17:318-23. https://doi.org/10.1097/00001574-200107000-00004
  • Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007; 140:12-9. https://doi.org/10.1016/j.jss.2006.07.050
  • Li X, Wang Q, Xu H, Tao L, Lu J, Cai L, Wang C. Somatostatin regulates tight junction proteins expression in colitis mice. Int J Clin Exp Pathol. 2014; 7:2153-62
  • De Salvo C, Ray S, Pizarro TT. Mechanisms and models for intestinal fibrosis in IBD. Dig Dis. 2014; 32(Suppl 1):26-34. https://doi.org/10.1159/000367822
  • Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E. The TNBS-induced colitis animal model: An overview. Ann Med Surg. 2016; 11:9-15. https://doi.org/10.1016/j.amsu.2016.07.019
  • Gerlach K, McKenzie AN, Neurath MF, Weigmann B. IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue Barriers. 2015; 3:e983777. https://doi.org/10.4161/21688370.2014.983777
  • Han X, Ren X, Jurickova I, Groschwitz K, Pasternak BA, Xu H, Wilson TA, Hogan SP, Denson LA. Regulation of intestinal barrier function by signal transducer and activator of transcription 5b. Gut. 2009; 58:49-58. https://doi.org/10.1136/gut.2007.145094
  • Sun X, Yang H, Nose K, Nose S, Haxhija EQ, Koga H, Feng Y, Teitelbaum DH. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008; 294:G139-47. https://doi.org/10.1152/ajpgi.00386.2007
  • Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis. 1999; 5:262-70. https://doi.org/10.1097/00054725-199911000-00004
  • Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: A spontaneous model of Crohn's disease-like ileitis. Inflamm Bowel Dis. 2011; 17:2566-84. https://doi.org/10.1002/ibd.21638
  • Olson TS, Reuter BK, Scott KG, Morris MA, Wang XM, Hancock LN, Burcin TL, Cohn SM, Ernst PB, Cominelli F, et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med. 2006; 203:541-52. https://doi.org/10.1084/jem.20050407
  • Poritz LS, Harris LR, 3rd, Kelly AA, Koltun WA. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig Dis Sci. 2011; 56:2802-9. https://doi.org/10.1007/s10620-011-1688-9
  • Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N. Colorectal cancer. Lancet. 2010; 375:1030-47. https://doi.org/10.1016/S0140-6736(10)60353-4
  • Kinugasa T, Huo Q, Higashi D, Shibaguchi H, Kuroki M, Tanaka T, Futami K, Yamashita Y, Hachimine K, Maekawa S, et al. Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res. 2007; 27:3729-34
  • Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, Bourgaux JF, Garambois V, Jay P, Blache P, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res. 2008; 68:4258-68. https://doi.org/10.1158/0008-5472.CAN-07-5805
  • Matsuda M, Sentani K, Noguchi T, Hinoi T, Okajima M, Matsusaki K, Sakamoto N, Anami K, Naito Y, Oue N, et al. Immunohistochemical analysis of colorectal cancer with gastric phenotype: Claudin-18 is associated with poor prognosis. Pathol Int. 2010; 60:673-80. https://doi.org/10.1111/j.1440-1827.2010.02587.x
  • Grone J, Weber B, Staub E, Heinze M, Klaman I, Pilarsky C, Hermann K, Castanos-Velez E, Röpcke S, Mann B, et al. Differential expression of genes encoding tight junction proteins in colorectal cancer: Frequent dysregulation of claudin-1, −8 and −12. Int J Colorectal Dis. 2007; 22:651-9. https://doi.org/10.1007/s00384-006-0197-3
  • Wang L, Li SY, An P, Cai HY. [Expression and clinical significance of Claudin-1 and Claudin-4 in colorectal cancer tissues]. Zhonghua Wei Chang Wai Ke Za Zhi. 2012; 15:1073-6
  • de Souza WF, Fortunato-Miranda N, Robbs BK, de Araujo WM, de-Freitas-Junior JC, Bastos LG, Viola JP, Morgado-Díaz JA. Claudin-3 overexpression increases the malignant potential of colorectal cancer cells: Roles of ERK1/2 and PI3K-Akt as modulators of EGFR signaling. PloS One. 2013; 8:e74994. https://doi.org/10.1371/journal.pone.0074994
  • Ueda J, Semba S, Chiba H, Sawada N, Seo Y, Kasuga M, Yokozaki H. Heterogeneous expression of claudin-4 in human colorectal cancer: Decreased claudin-4 expression at the invasive front correlates cancer invasion and metastasis. Pathobiology. 2007; 74:32-41. https://doi.org/10.1159/000101049
  • Oshima T, Kunisaki C, Yoshihara K, Yamada R, Yamamoto N, Sato T, Sato T, Makino H, Yamagishi S, Nagano Y, et al. Reduced expression of the claudin-7 gene correlates with venous invasion and liver metastasis in colorectal cancer. Oncol Rep. 2008; 19:953-9
  • Huo Q, Kinugasa T, Wang L, Huang J, Zhao J, Shibaguchi H, Kuroki M, Tanaka T, Yamashita Y, Nabeshima K, et al. Claudin-1 protein is a major factor involved in the tumorigenesis of colorectal cancer. Anticancer Res. 2009; 29:851-7
  • Bornholdt J, Friis S, Godiksen S, Poulsen SS, Santoni-Rugiu E, Bisgaard HC, Lothe IM, Ikdahl T, Tveit KM, Johnson E, et al. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis. BMC Cancer 2011; 11:65. https://doi.org/10.1186/1471-2407-11-65
  • Kinugasa T, Akagi Y, Ochi T, Tanaka N, Kawahara A, Ishibashi Y, Gotanda Y, Yamaguchi K, Shiratuchi I, Oka Y, et al. Increased claudin-1 protein expression in hepatic metastatic lesions of colorectal cancer. Anticancer Res. 2012; 32:2309-14
  • Maryan N, Statkiewicz M, Mikula M, Goryca K, Paziewska A, Strzalkowska A, Dabrowska M, Bujko M, Ostrowski J. Regulation of the expression of claudin 23 by the enhancer of zeste 2 polycomb group protein in colorectal cancer. Mol Med Rep. 2015; 12:728-36
  • Nakayama F, Semba S, Usami Y, Chiba H, Sawada N, Yokozaki H. Hypermethylation-modulated downregulation of claudin-7 expression promotes the progression of colorectal carcinoma. Pathobiology. 2008; 75:177-85. https://doi.org/10.1159/000124978
  • Shiou SR, Singh AB, Moorthy K, Datta PK, Washington MK, Beauchamp RD, Dhawan P. Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res. 2007; 67:1571-9. https://doi.org/10.1158/0008-5472.CAN-06-1680
  • Singh AB, Sharma A, Smith JJ, Krishnan M, Chen X, Eschrich S, Washington MK, Yeatman TJ, Beauchamp RD, Dhawan P. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells. Gastroenterology. 2011; 141:2140-53. https://doi.org/10.1053/j.gastro.2011.08.038
  • Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H, Hirakawa K. Low expression of claudin-1 and presence of poorly-differentiated tumor clusters correlate with poor prognosis in colorectal cancer. Anticancer Res. 2013; 33:3301-6
  • Harpavat S, Pammi M, Gilger M. Novel treatments for NEC: Keeping IBD in mind. Curr Gastroenterol Rep. 2012; 14:373-9. https://doi.org/10.1007/s11894-012-0267-3
  • Hansson GC, Johansson ME. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes. 2010; 1:51-4. https://doi.org/10.4161/gmic.1.1.10470
  • Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB. Mucosal barrier in ulcerative colitis and Crohn's disease. Gastroenterol Res Pract. 2013; 2013:431231. https://doi.org/10.1155/2013/431231
  • Arboleya S, Ang L, Margolles A, Yiyuan L, Dongya Z, Liang X, Solís G, Fernández N, de Los Reyes-Gavilán CG, Gueimonde M. Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe. 2012; 18:378-80. https://doi.org/10.1016/j.anaerobe.2012.04.013
  • Cassir N, Benamar S, Khalil JB, Croce O, Saint-Faust M, Jacquot A, Million M, Azza S, Armstrong N, Henry M, et al. Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates. Clin Infect Dis. 2015; 61:1107-15. https://doi.org/10.1093/cid/civ468
  • Ward DV, Scholz M, Zolfo M, Taft DH, Schibler KR, Tett A, Segata N, Morrow AL. Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic E. coli in Necrotizing Enterocolitis and Mortality in Preterm Infants. Cell Rep. 2016; 14:2912-24
  • Azcarate-Peril MA, Foster DM, Cadenas MB, Stone MR, Jacobi SK, Stauffer SH, Pease A, Gookin JL. Acute necrotizing enterocolitis of preterm piglets is characterized by dysbiosis of ileal mucosa-associated bacteria. Gut Microbes 2011; 2:234-43. https://doi.org/10.4161/gmic.2.4.16332
  • Loh G, Blaut M. Role of commensal gut bacteria in Inflamm Bowel Dis.. Gut Microbes. 2012; 3:544-55. https://doi.org/10.4161/gmic.22156
  • Yadav V, Varum F, Bravo R, Furrer E, Bojic D, Basit AW. Inflammatory bowel disease: Exploring gut pathophysiology for novel therapeutic targets. Transl Res. 2016; 176:38-68. https://doi.org/10.1016/j.trsl.2016.04.009
  • Hunter CJ, De Plaen IG. Inflammatory signaling in NEC: Role of NF-kappaB, cytokines and other inflammatory mediators. Pathophysiology. 2014; 21:55-65. https://doi.org/10.1016/j.pathophys.2013.11.010
  • Emami CN, Chokshi N, Wang J, Hunter C, Guner Y, Goth K, Wang L, Grishin A, Ford HR. Role of interleukin-10 in the pathogenesis of necrotizing enterocolitis. Am J Surg 2012; 203:428-35. https://doi.org/10.1016/j.amjsurg.2011.08.016
  • Kling KM, Kirby L, Kwan KY, Kim F, McFadden DW. Interleukin-10 inhibits inducible nitric oxide synthase in an animal model of necrotizing enterocolitis. Int J Surg Invest. 1999; 1:337-42
  • Nadler EP, Stanford A, Zhang XR, Schall LC, Alber SM, Watkins SC, Ford HR. Intestinal cytokine gene expression in infants with acute necrotizing enterocolitis: Interleukin-11 mRNA expression inversely correlates with extent of disease. J Pediatr Surg. 2001; 36:1122-9. https://doi.org/10.1053/jpsu.2001.25726
  • Scharl M, Paul G, Barrett KE, McCole DF. AMP-activated protein kinase mediates the interferon-gamma-induced decrease in intestinal epithelial barrier function. J Biol Chem. 2009; 284:27952-63. https://doi.org/10.1074/jbc.M109.046292
  • Sato Y, Takahashi S, Kinouchi Y, Shiraki M, Endo K, Matsumura Y, Kakuta Y, Tosa M, Motida A, Abe H, et al. IL-10 deficiency leads to somatic mutations in a model of IBD. Carcinogenesis. 2006; 27:1068-73. https://doi.org/10.1093/carcin/bgi327
  • Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol. 2004; 10:620-5. https://doi.org/10.3748/wjg.v10.i5.620
  • Tremblay E, Thibault MP, Ferretti E, Babakissa C, Bertelle V, Bettolli M, Burghardt KM, Colombani JF, Grynspan D, Levy E, et al. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn's disease. BMC Med Genom. 2016; 9:6. https://doi.org/10.1186/s12920-016-0166-9
  • Rosenstiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig GH, Seegert D, Schreiber S. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology. 2003; 124:1001-9. https://doi.org/10.1053/gast.2003.50157
  • Zouali H, Bonnard A, De Lagausie DL, Farnoux C, Aigrain Y, Cezard JP, Cezard JP, Peuchmaur M, Hugot JP, Berrebi D. CARD15/NOD2 is not a predisposing factor for necrotizing enterocolitis. Dig Dis Sci. 2005; 50:1684-7. https://doi.org/10.1007/s10620-005-2915-z
  • Hartel C, Hartz A, Pagel J, Rupp J, Stein A, Kribs A, et al. NOD2 Loss-of-Function Mutations and Risks of Necrotizing Enterocolitis or Focal Intestinal Perforation in Very Low-birth-weight Infants. Inflamm Bowel Dis. 2016; 22:249-56. https://doi.org/10.1097/MIB.0000000000000658

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.