4,202
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Optimization of an oral mucosa in vitro model based on cell line TR146

, , , , , , & show all
Article: 1748459 | Received 04 Jan 2020, Accepted 24 Mar 2020, Published online: 21 Apr 2020

References

  • Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J. Natl. Cancer Inst. Monogr. 2001;52242:1–22.
  • Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva. Clin Pharmacokinet. 1992;23:365–379. doi:10.2165/00003088-199223050-00003.
  • Haeckel R, Hänecke P. The application of saliva, sweat and tear fluid for diagnostic purposes. Ann Biol Clin. 1993;51:903–910.
  • Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013;26:781–791.
  • Jasim H, Carlsson A, Hedenberg-Magnusson B, Ghafouri B, Ernberg M. Saliva as a medium to detect and measure biomarkers related to pain. Sci Rep. 2018;8:1–9. doi:10.1038/s41598-018-21131-4.
  • Francois M, Leifert W, Martins R, Thomas P, Fenech M. Biomarkers of Alzheimer’s disease risk in peripheral tissues; focus on buccal cells. Curr Alzheimer Res. 2014;11:519–531. doi:10.2174/1567205011666140618103827.
  • François M, F. Fenech M, Thomas P, Hor M, Rembach A, N. Martins R, R. Rainey-Smith S, L. Masters C, Ames D, C. Rowe C, et al. High content, multi-parameter analyses in buccal cells to identify Alzheimer’s disease. Curr. Alzheimer Res. 2016;13:787–799.
  • Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH values, different osmolality values, and bile salts. Int J Pharm. 1999;185:215–225. doi:10.1016/S0378-5173(99)00165-9.
  • Jacobsen J, van Deurs B, Pedersen M, Rassing MR. TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm. 1995;125:165–184. doi:10.1016/0378-5173(95)00109-V.
  • Mørck Nielsen H, Rømer Rassing M. TR 146 cells grown on filters as a model of human buccal epithelium: V. Enzyme activity of the TR146 cell culture model, human buccal epithelium and porcine buccal epithelium, and permeability of leu-enkephalin. Int J Pharm. 2000;200:261–270. doi:10.1016/S0378-5173(00)00394-X.
  • Jacobsen J, Nielsen EB, Brondum-Nielsen K, Christensen ME, Olin HBD, Tommerup N, Rassing MR. Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur J Oral Sci. 1999;107:138–146.
  • Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and β-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm. 2000;194:155–167. doi:10.1016/S0378-5173(99)00368-3.
  • Novakova I, Subileau E-A, Toegel S, Gruber D, Lachmann B, Urban E, Chesne C, Noe CR, Neuhaus W, et al. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS One. 2014;9:1–14.
  • Neuhaus W, Plattner VE, Wirth M, Germann B, Lachmann B, Gabor F, Noe CR. Validation of in vitro cell culture models of the blood–brain barrier: tightness characterization of two promising cell lines. J Pharm Sci. 2008;97:5158–5175.
  • Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, Lorenz AK, Krebs A, Drewell C, Schirrmann K, et al. Towards an autologous iPSC-derived patient-on-a-chip. bioRxiv 376970. 2018. doi:10.1101/376970.
  • Gerhartl A, Hahn K, Neuhoff A, Friedl H-P, Förster CY, Wunder C, Schick M, Burek M, Neuhaus W. Hydroxyethylstarch (130/0.4) tightens the blood-brain barrier in vitro. Brain Res. 2020;1727:146560.
  • Neuhaus W, Samwer F, Kunzmann S, Muellenbach RM, Wirth M, Speer CP, Roewer N, Förster CY. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation. 2012;84:294–304. doi:10.1016/j.diff.2012.08.006.
  • Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci. 2014;8:1–16.
  • Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers. 2018;1–42. doi:10.1080/21688370.2018.1479568.
  • Colley HE, Hearnden V, Jones AV, Weinreb PH, Violette SM, MacNeil S, Thornhill MH, Murdoch C. Development of tissue-engineered models of oral dysplasia and early invasive oral squamous cell carcinoma. Br J Cancer. 2011;105:1582–1592.
  • Buskermolen JK, Reijnders CMA, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, Bakker AD, Gibbs S. Development of a full-thickness human gingiva equivalent constructed from immortalized keratinocytes and fibroblasts. Tissue Eng Part C Methods. 2016;22:781–791.
  • Jennings LR, Colley HE, Ong J, Panagakos F, Masters JG, Trivedi HM, Murdoch C, Whawell S. Development and characterization of in vitro human oral mucosal equivalents derived from immortalized oral keratinocytes. Tissue Eng Part C Methods. 2016;22:1108–1117. doi:10.1089/ten.tec.2016.0310.
  • Dalley AJ, Abdulmajeed AA, Upton Z, Farah CS. Organotypic culture of normal, dysplastic and squamous cell carcinoma-derived oral cell lines reveals loss of spatial regulation of CD44 and p75NTR in malignancy. J Oral Pathol Med. 2013;42:37–46. doi:10.1111/j.1600-0714.2012.01170.x.
  • Dongari-Bagtzoglou A, Kashleva H. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc. 2006;1:2012–2018. doi:10.1038/nprot.2006.323.
  • Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, et al. Systems toxicology assessment of the biological impact of a candidate modified risk tobacco product on human organotypic oral epithelial cultures. Chem Res Toxicol. 2016;29:1252–1269.
  • Koschier F, Kostrubsky V, Toole C, Gallo MA. In vitro effects of ethanol and mouth rinse on permeability in an oral buccal mucosal tissue construct. Food Chem Toxicol. 2011;49:2524–2529. doi:10.1016/j.fct.2011.06.018.
  • Lu Q, Jayatilake JAMS, Samaranayake LP, Jin L. Hyphal invasion of Candida albicans inhibits the expression of human β-defensins in experimental oral candidiasis. J Invest Dermatol. 2006;126:2049–2056. doi:10.1038/sj.jid.5700346.
  • Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology. 2004;150:267–275.
  • Wang A, Wang CP, Tu M, Wong DTW. Oral biofluid biomarker research: current status and emerging frontiers. Diagnostics. 2016;6:45.
  • Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57:675–687. doi:10.1373/clinchem.2010.153767.
  • Klemetsrud T, Kjøniksen AL, Hiorth M, Jacobsen J, Smistad G. Polymer coated liposomes for use in the oral cavity–a study of the in vitro toxicity, effect on cell permeability and interaction with mucin. J Liposome Res. 2018;28:62–73. doi:10.1080/08982104.2016.1255640.
  • Teubl BJ, Absenger M, Fröhlich E, Leitinger G, Zimmer A, Roblegg E. The oral cavity as a biological barrier system: design of an advanced buccal in vitro permeability model. Eur J Pharm Biopharm. 2013;84:386–393.
  • Portero A, Remuñán-López C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model - An in vitro model of the buccal epithelium. Pharm Res. 2002;19:169–174. doi:10.1023/A:1014220832384.
  • Kim YJ, Choi MJ, Bak DH, Lee BC, Ko EJ, Ahn GR, Ahn SW, Kim MJ, Na J, Kim BJ. Topical administration of EGF suppresses immune response and protects skin barrier in DNCB-induced atopic dermatitis in NC/Nga mice. Sci Rep. 2018;8:1–11. doi:10.1038/s41598-017-17765-5.
  • Tang X, Liu H, Yang S, Li Z, Zhong J, Fang R. Epidermal growth factor and intestinal barrier function. Mediators Inflamm. 2016;2016:27–30.
  • Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and ascorbic acid synergistically prevent and repair lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Chest. 2017;152:954–962. doi:10.1016/j.chest.2017.07.014.
  • Kürti L, Veszelka S, Bocsik A, Ózsvári B, Puskás LG, Kittel Á, Szabó-Révész P, Deli MA. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology. 2013;65:395–406.
  • Schrot S, Weidenfeller C, Schäffer TE, Robenek H, Galla H-J. Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophys J. 2005;89:3904–3910. doi:10.1529/biophysj.104.058750.
  • Kılıc Y,  Cetin HN, Sumlu E, Pektas MB, Koca HB, Akar F. Effects of boxing matches on metabolic, hormonal, and inflammatory parameters in male elite boxers. Med. 2019;55:1–11.
  • Cannizzaro E, Cirrincione L, Mazzucco W, Scorciapino A, Catalano C, Ramaci T, Ledda C, Plescia F. Night-time shift work and related stress responses: A study on security guards. Int J Environ Res Public Health. 2020;17:562. doi:10.3390/ijerph17020562.
  • Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environ Health Perspect. 1989;80:109–116. doi:10.1289/ehp.8980109.
  • Reiss M, Pitman SW, Sartorelli AC. Modulation of the terminal differentiation of human squamous carcinoma cells in vitro by all-trans-retinoic acid1, 2. J Natl Cancer Inst. 1985;74:1015–1023.
  • Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. 2018;10:a029314. doi:10.1101/cshperspect.a029314.
  • Weber CR. Dynamic properties of the tight junction barrier. Ann N Y Acad Sci. 2012;1257:77–84. doi:10.1111/j.1749-6632.2012.06528.x.
  • Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157–165. doi:10.1016/j.semcdb.2014.08.011.
  • Tsukita S, Tanaka H, The Claudins: TA. From tight junctions to biological systems. Trends Biochem Sci. 2019;44:141–152. doi:10.1016/j.tibs.2018.09.008.
  • Dos Reis PP, Bharadwaj RR, Machado J, MacMillan C, Pintilie M, Sukhai MA, Perez-Ordonez B, Gullane P, Irish J, Kamel-Reid S, et al. Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer. 2008;113:3169–3180.
  • Lourenço SV, Coutinho-Camillo CM, Buim MEC, Pereira CM, Carvalho AL, Kowalski LP, Soares FA. Oral squamous cell carcinoma: status of tight junction claudins in the different histopathological patterns and relationship with clinical parameters. A tissue-microarray-based study of 136 cases. J Clin Pathol. 2010;63:609–614.
  • Bayar GR, Aydintug YS, Gulses A, Elci P, Sarper M. A pilot study of the primary culture of the oral mucosa keratinocytes by the direct explant technique. Oral Health and Dental Management in Black Sea Countries. 2011;10:88–92.
  • Peramo A, Marcelo CL, Feinberg SE. Tissue engineering of lips and muco-cutaneous junctions: in vitro development of tissue engineered constructs of oral mucosa and skin for lip reconstruction. Tissue Eng Part C Methods. 2012;18:273–282. doi:10.1089/ten.tec.2011.0406.
  • Donetti E, Bedoni M, Boschini E, Dellavia C, Barajon I, Gagliano N. Desmocollin 1 and desmoglein 1 expression in human epidermis and keratinizing oral mucosa: a comparative immunohistochemical and molecular study. Arch Dermatol Res. 2005;297:31–38.
  • Slomiany BL, Murty VLN, Piotrowski J, Slomiany A. Salivary mucins in oral mucosal defense. Gen Pharmacol. 1996;27(5):761–771. doi:10.1016/0306-3623(95)02050-0.
  • Frenkel ES, Ribbeck K. Salivary mucins in host defense and disease prevention. J Oral Microbiol. 2015;7(1):29759. doi:10.3402/jom.v7.29759.
  • Sen S, Sharma S, Gupta A, Gupta N, Singh H, Roychoudhury A, Mohanty S, Sen S, Nag TC, Tandon R, et al. Molecular characterization of explant cultured human oral mucosal epithelial cells. Investig Ophthalmol Vis Sci. 2011;52:9548–9554.
  • Alos L, Lujan B, Castillo M, Nadal A, Carreras M, Caballero M, de Bolos C, Cardesa A. Expression of Membrane-Bound Mucins (MUC1 and MUC4) and Secreted Mucins (MUC2, MUC5AC, MUC5B, MUC6 and MUC7) in mucoepidermoid carcinomas of salivary glands. Am J Surg Pathol. 2005;29:806–813. doi:10.1097/01.pas.0000155856.84553.c9.
  • Suh H, Valle S, Morris DL. Targeting MUC16 in cancer therapy. Chemother Open Access. 2017;06:6–10.
  • Ukkonen H, Pirhonen P, Herrala M, Mikkonen JJW, Singh SP, Sormunen R, Kullaa AM. Oral mucosal epithelial cells express the membrane anchored mucin MUC1. Arch Oral Biol. 2017;73:269–273.
  • Kho HS. Oral epithelial MUC1 and oral health. Oral Dis. 2018;24:19–21. doi:10.1111/odi.12713.
  • Thakur A, Tupkari J, Joy T, Kende P, Siwach P, Ahire M. Expression of mucin-1 in oral squamous cell carcinoma and normal oral mucosa: an immunohistochemical study. J Oral Maxillofac Pathol. 2018;22:210–215.
  • Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 2006;99:1616–1627.
  • Agrawal S, Bhattacharya A, Manhas J, Kholakiya Y, Khera N, Roychoudhury A, Sen S. Increased mucin expression in oral mucosal epithelial cells in vitro: a potential new role of mycophenolate mofetil. Tokai J Exp Clin Med. 2018;43:132–138.
  • Bai Q, Liu L, Long Q, Xia Y, Wang J, Xu J, Guo J. Decreased expression of mucin 18 is associated with unfavorable postoperative prognosis in patients with clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8:11005–11014.
  • Simon GC, Martin RJ, Smith S, Thaikoottathil J, Bowler RP, Barenkamp SJ, Chu HW. Up-regulation of MUC18 in airway epithelial cells by IL-13 implications in bacterial adherence. Am J Respir Cell Mol Biol. 2011;44:606–613.
  • Wu Q, Case SR, Minor MN, Jiang D, Martin RJ, Bowler RP, Wang J, Hartney J, Karimpour-Fard A, Chu HW, et al. A novel function of MUC18: amplification of lung inflammation during bacterial infection. Am J Pathol. 2013;182:819–827.
  • Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest. 2018;154:169–176. doi:10.1016/j.chest.2017.11.008.
  • Woodward AM, Argüeso P. Expression analysis of the transmembrane mucin MUC20 in human corneal and conjunctival epithelia. Investig Ophthalmol Vis Sci. 2014;55:6132–6138. doi:10.1167/iovs.14-15269.
  • Wang H, Wang H, Shen L, Lin Y, Shi Q, Yang Y. The expression and prognostic significance of Mucin 13 and Mucin 20 in esophageal squamous cell carcinoma. J Cancer Res Ther. 2015;11:74–79.
  • Itoh Y, Kamata-Sakurai M, Denda-Nagai K, Nagai S, Tsuiji M, Ishii-Schrade K, Okada K, Goto A, Fukayama M, Irimura T, et al. Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology. 2008;18:74–83.
  • Wang Y, Tatakis DN. Human gingiva transcriptome during wound healing. 2016. doi:10.1111/jcpe.12669.
  • Delporte C, Bryla A, Perret J. Aquaporins in salivary glands: from basic research to clinical applications. Int J Mol Sci. 2016;17:1–13. doi:10.3390/ijms17020166.
  • Poveda M, Hashimoto S, Matsuki-Fukushima M, Sasaki H, Sakurai K, Masaki S. Expression and localization of aqua-glyceroporins AQP3 and AQP9 in rat oral epithelia. Bull Tokyo Dent Coll. 2014;55:1–10.
  • Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015;7:1–9. doi:10.12703/P7-14.
  • Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12:600–620. doi:10.2174/138945011795378504.
  • Lin DJH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics. Clin Pharmacokinet. 2012;42:59–98. doi:10.2165/00003088-200342010-00003.
  • Peng R, Zhang H, Zhang Y, Wei DY. Impacts of ABCB1 (G1199A) polymorphism on resistance, uptake, and efflux to steroid drugs. Xenobiotica. 2016;46:948–952. doi:10.3109/00498254.2016.1138249.
  • Paitz RT, Bukhari SA, Bell AM. Stickleback embryos use ATP-binding cassette transporters as a buffer against exposure to maternally derived cortisol. Proc R Soc B Biol Sci. 2016;283:1–7. doi:10.1098/rspb.2015.2838.
  • Burns VE, Kerppola TK. ATR-101 inhibits cholesterol efflux and cortisol secretion by ATP-binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells. Br J Pharmacol. 2017;174:3315–3332. doi:10.1111/bph.13951.
  • Neary JP, Malbon L, McKenzie DC. Relationship between serum, saliva and urinary cortisol and its implication during recovery from training. J Sci Med Sport. 2002;5:108–114. doi:10.1016/S1440-2440(02)80031-7.
  • Turpeinen U, Hämäläinen E. Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab. 2013;27:795–801. doi:10.1016/j.beem.2013.10.008.
  • Bicakci T, Ozcaka O, Tuzunsoy-aktas R, Nalbantsoy A, Akcali A, Bicakci N, Kose T. Effects of potassium aluminum sulfate on TNF-α, MMP −1 and MMP-8 levels at gingival crevicular fluid in periodontally healthy subjects: a pilot study. Turkish J Biochem. 2012;37:315–321.
  • Iyengar A, Paulus JK, Gerlanc DJ, Maron JL. Detection and potential utility of C-reactive protein in saliva of neonates. Front Pediatr. 2014;2:1–6. doi:10.3389/fped.2014.00131.