420
Views
5
CrossRef citations to date
0
Altmetric
Review

Effect of altered human exposome on the skin and mucosal epithelial barrier integrity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2133877 | Received 27 Jun 2022, Accepted 27 Aug 2022, Published online: 19 Oct 2022

References

  • Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21(11):332–360. doi:10.1038/s41577-021-00538-7.
  • Peng C, Yu N, Ding Y, Shi Y. Epidemiological variations in global burden of atopic dermatitis: an analysis of trends from 1990 to 2019. Allergy. 2022;77(9):2843–2845. doi:10.1111/all.15380.
  • Haahtela T, Jantunen J, Saarinen K, Tommila E, Valovirta E, Vasankari T, Mäkelä MJ. Managing the allergy and asthma epidemic in 2020s-lessons from the Finnish experience. Allergy. 2022;77(8):2367–2380. doi:10.1111/all.15266.
  • Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022;77(5):1418–1449. doi:10.1111/all.15240.
  • Peters A, Nawrot TS, Baccarelli AA. Hallmarks of environmental insults. Cell. 2021;184(6):1455–1468. doi:10.1016/j.cell.2021.01.043.
  • Landrigan PJ, Fuller R, Acosta NJR, et al. The Lancet Commission on pollution and health. Lancet. 2018;391(10119):462–512. doi:10.1016/S0140-6736(17)32345-0.
  • Celebi Sözener Z, Cevhertas L, Nadeau K, Akdis M, Akdis CA. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145(6):1517–1528. doi:10.1016/j.jaci.2020.04.024.
  • Alkotob SS, Cannedy C, Harter K, Movassagh H, Paudel B, Prunicki M, Sampath V, Schikowski T, Smith E, Zhao Q, et al. Advances and novel developments in environmental influences on the development of atopic diseases. Allergy. 2020;75(12):3077–3086. doi:10.1111/all.14624.
  • Stefanovic N, Flohr C, Irvine AD. The exposome in atopic dermatitis. Allergy. 2020;75(1):63–74. doi:10.1111/all.13946.
  • Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 2020;54(5):2575–2584. doi:10.1021/acs.est.9b06379.
  • EEB. The great detox – largest ever ban of toxic chemicals announced by EU. European Environmental Bureau. Published 2022. Accessed 05.july.2022, 2022.
  • Karlsson O, Rocklöv J, Lehoux AP, Bergquist J, Rutgersson A, Blunt MJ, Birnbaum LS. The human exposome and health in the anthropocene. Int J Epidemiol. 2021;50(2):378–389. doi:10.1093/ije/dyaa231.
  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019;53(4):1748–1765. doi:10.1021/acs.est.8b05512.
  • Collaborators GRF. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1223–1249.
  • Kik K, Bukowska B, Sicińska P. Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020;262:114297. doi:10.1016/j.envpol.2020.114297.
  • Prata JC. Airborne microplastics: consequences to human health? Environ Pollut. 2018;234:115–126. doi:10.1016/j.envpol.2017.11.043.
  • Marcantonio R, Javeline D, Field S, Fuentes A. Global distribution and coincidence of pollution, climate impacts, and health risk in the anthropocene. PLoS One. 2021;16(7):e0254060. doi:10.1371/journal.pone.0254060.
  • Haines A, Ebi K, Solomon CG. The imperative for climate action to protect health. N Engl J Med. 2019;380(3):263–273. doi:10.1056/NEJMra1807873.
  • Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML, Haines A, Ebi KL, Li S, Guo Y, et al. Wildfires, global climate change, and human health. N Engl J Med. 2020;383(22):2173–2181. doi:10.1056/NEJMsr2028985.
  • Prescott SL, Logan AC, Bristow J, Rozzi R, Moodie R, Redvers N, Haahtela T, Warber S, Poland B, Hancock T. Exiting the Anthropocene: achieving personal and planetary health in the 21st century. Allergy. 2022. doi:10.1111/all.15419.
  • WWF. Living planet report - 2018: aiming higher. In: Grooten M, Almond REA editors. Gland (Switzerland): WWF; 2018.
  • Kim KN, Hong YC. The exposome and the future of epidemiology: a vision and prospect. Environ Health Toxicol. 2017;32:e2017009. doi:10.5620/eht.e2017009.
  • Agache I, Miller R, Gern JE, Hellings PW, Jutel M, Muraro A, Phipatanakul W, Quirce S, Peden D. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a practall document. Allergy. 2019;74(3):449–463. doi:10.1111/all.13690.
  • Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21(1):5–9. doi:10.1038/jes.2010.50.
  • Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. doi:10.1126/sciadv.1700782.
  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. doi:10.3389/fpubh.2020.00014.
  • Tandon A, Kanchan T, Tandon A. The poison we breathe. Lancet. 2020;395(10221):e18. doi:10.1016/S0140-6736(19)32547-4.
  • WHO. Global ambient air quality database. https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/ambient-air-pollution. Accessed 28.11.21, 2021.
  • Diao P, He H, Tang J, Xiong L, Li L. Natural compounds protect the skin from airborne particulate matter by attenuating oxidative stress. Biomed Pharmacother. 2021;138:111534. doi:10.1016/j.biopha.2021.111534.
  • Yang L, Li C, Tang X. The impact of PM(2.5) on the host defense of respiratory system. Front Cell Dev Biol. 2020;8:91. doi:10.3389/fcell.2020.00091.
  • Goshua A, Akdis C, Nadeau KC. World Health Organization global air quality guideline recommendations: executive summary. Allergy. 2022;77(7):1955–1960. doi:10.1111/all.15224.
  • World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization; 2021.
  • Luo X, Hong H, Lu Y, Deng S, Wu N, Zhou Q, Chen Z, Feng P, Zhou Y, Tao J, et al. Impact of air pollution and meteorological factors on incidence of allergic rhinitis: a low-latitude multi-city study in China. Allergy. 2022. doi:10.1111/all.15469.
  • Cao S, Zhang S, Gao C, Yan Y, Bao J, Su L, Liu M, Peng N, Liu M. A long-term analysis of atmospheric black carbon MERRA-2 concentration over China during 1980–2019. Atmospheric Environment. 2021;264:118662. doi:10.1016/j.atmosenv.2021.118662.
  • Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Coelho MSZS, Saldiva PHN, Lavigne E, Matus P, et al. Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med. 2019;381(8):705–715. doi:10.1056/NEJMoa1817364.
  • Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environment International. 2017;100:1–31. doi:10.1016/j.envint.2016.11.012.
  • Kim H, Kim WH, Kim YY, Park HY. Air pollution and central nervous system disease: a review of the impact of fine particulate matter on neurological disorders. Front Public Health. 2020;8:575330. doi:10.3389/fpubh.2020.575330.
  • Adam MG, Tran PTM, Balasubramanian R. Air quality changes in cities during the COVID-19 lockdown: a critical review. Atmos Res. 2021;264:105823. doi:10.1016/j.atmosres.2021.105823.
  • González-Martín J, Kraakman NJR, Pérez C, Lebrero R, Muñoz R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere. 2021;262:128376. doi:10.1016/j.chemosphere.2020.128376.
  • WHO. Tobacco 2021 Available at: https://www.who.int/news-room/fact-sheets/detail/tobacco. Accessed 31.10, 2021.
  • Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Communications. 2019;5(1):6. doi:10.1057/s41599-018-0212-7.
  • Zhang Q, Xu EG, Li J, et al. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol. 2020;54(7):3740–3751. doi:10.1021/acs.est.9b04535.
  • Snelson M, Tan SM, Clarke RE, et al. Processed foods drive intestinal barrier permeability and microvascular diseases. Sci Adv. 2021;7(14). doi:10.1126/sciadv.abe4841.
  • Lane MM, Davis JA, Beattie S, Gómez‐Donoso C, Loughman A, O’Neil A, Jacka F, Berk M, Page R, Marx W, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev. 2021;22(3):e13146. doi:10.1111/obr.13146.
  • Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E. Trends in the food and sports nutrition industry: a review. Crit Rev Food Sci Nutr. 2020;60(14):2405–2421. doi:10.1080/10408398.2019.1643287.
  • Sproesser G, Ruby MB, Arbit N, Akotia CS, Alvarenga MDS, Bhangaokar R, Furumitsu I, Hu X, Imada S, Kaptan G, et al. Understanding traditional and modern eating: the TEP10 framework. BMC Public Health. 2019;19(1):1606. doi:10.1186/s12889-019-7844-4.
  • Agache I, Sampath V, Aguilera J, et al. Climate change and global health: a call to more research and more action. Allergy. 2022;77(5):1389–1407. doi:10.1111/all.15229.
  • D’Amato G, Akdis CA. Global warming, climate change, air pollution and allergies. Allergy. 2020;75(9):2158–2160. doi:10.1111/all.14527.
  • Atwoli L, Baqui AH, Benfield T, Bosurgi R, Godlee F, Hancocks S, Horton R, Laybourn‐Langton L, Monteiro CA, Norman I, et al. Call for emergency action to limit global temperature increases, restore biodiversity and protect health: wealthy nations must do much more, much faster: wealthy nations must do much more, much faster. Allergy. 2022;77(3):730–733. doi:10.1111/all.15059.
  • Meinshausen M, Lewis J, McGlade C, et al. Realization of Paris Agreement pledges may limit warming just below 2°C. Nature. 2022;604(7905):304–309.
  • Nadeau KC, Agache I, Jutel M, et al. Climate change: a call to action for the united nations. Allergy. 2022;77(4):1087–1090.
  • De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127(3):773–786.e771–777. doi:10.1016/j.jaci.2010.10.018.
  • Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–1327. doi:10.1056/NEJMra1011040.
  • Xiao C, Puddicombe SM, Field S, et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011;128(3):549–556.e541–512. doi:10.1016/j.jaci.2011.05.038.
  • Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087–1096.e1010. doi:10.1016/j.jaci.2012.05.052.
  • Steelant B, Farré R, Wawrzyniak P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol. 2016;137(4):1043–1053. e1045. doi:10.1016/j.jaci.2015.10.050.
  • Toedter G, Li K, Sague S, Ma K, Marano C, Macoritto M, Park J, Deehan R, Matthews A, Wu GD, et al. Genes associated with intestinal permeability in ulcerative colitis: changes in expression following infliximab therapy. Inflamm Bowel Dis. 2012;18(8):1399–1410. doi:10.1002/ibd.22853.
  • Clemente MG, De Virgiliis S, Kang JS, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003;52(2):218–223. doi:10.1136/gut.52.2.218.
  • Sorini C, Cosorich I, Lo Conte M, De Giorgi L, Facciotti F, Lucianò R, Rocchi M, Ferrarese R, Sanvito F, Canducci F, et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A. 2019;116(30):15140–15149. doi:10.1073/pnas.1814558116.
  • Raybould HE. Gut microbiota, epithelial function and derangements in obesity. J Physiol. 2012;590(3):441–446. doi:10.1113/jphysiol.2011.222133.
  • Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol. 2019;71(6):1216–1228. doi:10.1016/j.jhep.2019.08.005.
  • Tajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020;11(1):1995. doi:10.1038/s41467-020-15831-7.
  • Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis. 2017;76(6):1123–1132. doi:10.1136/annrheumdis-2016-210000.
  • Abdelhamid L, Luo XM. Retinoic acid, leaky gut, and autoimmune diseases. Nutrients. 2018;10(8):1016. doi:10.3390/nu10081016.
  • Fiorentino M, Sapone A, Senger S, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7(1):49. doi:10.1186/s13229-016-0110-z.
  • Pellegrini C, Antonioli L, Colucci R, Blandizzi C, Fornai M. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol. 2018;136(3):345–361. doi:10.1007/s00401-018-1856-5.
  • Köhler CA, Maes M, Slyepchenko A, Berk M, Solmi M, Lanctôt K, Carvalho A. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in alzheimer’s disease. Curr Pharm Des. 2016;22(40):6152–6166. doi:10.2174/1381612822666160907093807.
  • Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. doi:10.3389/fncel.2015.00392.
  • Fukuoka A, Yoshimoto T. Barrier dysfunction in the nasal allergy. Allergol Int. 2018;67(1):18–23. doi:10.1016/j.alit.2017.10.006.
  • Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers. 2021;9(1):1848212. doi:10.1080/21688370.2020.1848212.
  • Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6(4):328–340. doi:10.1038/nrm1619.
  • Riethmuller C, McAleer MA, Koppes SA, Abdayem R, Franz J, Haftek M, Campbell LE, MacCallum SF, McLean WHI, Irvine AD, et al. Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J Allergy Clin Immunol. 2015;136(6):1573–1580.e1572. doi:10.1016/j.jaci.2015.04.042.
  • Steinert PM, Marekov LN. The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem. 1995;270(30):17702–17711. doi:10.1074/jbc.270.30.17702.
  • Heijink IH, Kuchibhotla VNS, Roffel MP, Maes T, Knight DA, Sayers I, Nawijn MC. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75(8):1902–1917. doi:10.1111/all.14421.
  • Constant DA, Nice TJ, Rauch I. Innate immune sensing by epithelial barriers. Curr Opin Immunol. 2021;73:1–8. doi:10.1016/j.coi.2021.07.014.
  • Pat Y, Ogulur I. The epithelial barrier hypothesis: a 20-year journey. Allergy. 2021;76(11):3560–3562. doi:10.1111/all.14899.
  • Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories. 2020;19(1):23. doi:10.1186/s12934-020-1289-4.
  • Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Front Nutr. 2021;8:718356. doi:10.3389/fnut.2021.718356.
  • Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of intestinal barrier function by microbial metabolites. Cell Mol Gastroenterol Hepatol. 2021;11(5):1463–1482. doi:10.1016/j.jcmgh.2021.02.007.
  • Mitamura Y, Ogulur I, Pat Y, Rinaldi AO, Ardicli O, Cevhertas L, Brüggen M-C, Traidl‐Hoffmann C, Akdis M, Akdis CA, et al. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis. 2021;85(6):615–626. doi:10.1111/cod.13959.
  • Koh LF, Ong RY, Common JE. Skin microbiome of atopic dermatitis. Allergol Int. 2021;71(1):31–39. doi:10.1016/j.alit.2021.11.001.
  • Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L. Microbiome and asthma. Asthma Res Pract. 2018;4(1):1. doi:10.1186/s40733-017-0037-y.
  • DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137–1150. doi:10.1097/MIB.0000000000000750.
  • Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O’Mahony L. Recent developments and highlights in mechanisms of allergic diseases: microbiome. Allergy. 2018;73(12):2314–2327. doi:10.1111/all.13634.
  • Lee JJ, Kim SH, Lee MJ, Kim B-K, Song W-J, Park H-W, Cho S-H, Hong S-J, Chang Y-S, Kim B-S, et al. Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy. 2019;74(4):709–719. doi:10.1111/all.13608.
  • Savage JH, Lee-Sarwar KA, Sordillo J, Bunyavanich S, Zhou Y, O’Connor G, Sandel M, Bacharier LB, Zeiger R, Sodergren E, et al. A prospective microbiome-wide association study of food sensitization and food allergy in early childhood. Allergy. 2018;73(1):145–152. doi:10.1111/all.13232.
  • Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, Jones SM, Leung DYM, Sampson HA, Sicherer SH, et al. Early-life gut microbiome and egg allergy. Allergy. 2018;73(7):1515–1524. doi:10.1111/all.13389.
  • Sbihi H, Boutin RC, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: how early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy. 2019;74(11):2103–2115. doi:10.1111/all.13812.
  • Trautmann A, Kruger K, Akdis M, Müller-Wening D, Akkaya A, Bröcker E-B, Blaser K, Akdis CA. Apoptosis and loss of adhesion of bronchial epithelial cells in asthma. Int Arch Allergy Immunol. 2005;138(2):142–150. doi:10.1159/000088436.
  • de Boer Wi, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN, Braunstahl GJ, de Boer WI. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can J Physiol Pharmacol. 2008;86(3):105–112. doi:10.1139/Y08-004.
  • Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol. 2017;139(1):93–103. doi:10.1016/j.jaci.2016.03.050.
  • Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, Duan S, Eiwegger T, Eljaszewicz A, Ferstl R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. doi:10.1016/j.jaci.2016.06.033.
  • Sugita K, Steer CA, Martinez-Gonzalez I, Altunbulakli C, Morita H, Castro-Giner F, Kubo T, Wawrzyniak P, Rückert B, Sudo K, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol. 2018;141(1):300–310.e311. doi:10.1016/j.jaci.2017.02.038.
  • Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, Eljaszewicz A, Moniuszko M, Akdis M, Akdis CA, et al. Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy. 2019;74(2):294–307. doi:10.1111/all.13619.
  • Ms J W, Ms X K, Ms ZQ H, Shen, MS L, Luo, MD Q, Li, MS M-Y, Luo, MS L-P, Tu, MS J-H, Han, MS M, Ye J, et al. Protease-activated receptor-2 decreased zonula occlidens-1 and claudin-1 expression and induced epithelial barrier dysfunction in allergic rhinitis. Am J Rhinol Allergy. 2021;35(1):26–35. doi:10.1177/1945892420932486.
  • Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018;67(1):3–11. doi:10.1016/j.alit.2017.10.002.
  • Pellerin L, Henry J, Hsu CY, Balica S, Jean-Decoster C, Méchin M-C, Hansmann B, Rodriguez E, Weindinger S, Schmitt A-M, et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol. 2013;131(4):1094–1102. doi:10.1016/j.jaci.2012.12.1566.
  • Gao W, Gong J, Mu M, Zhu Y, Wang W, Chen W, Han G, Hu H, Bao P. The pathogenesis of eosinophilic asthma: a positive feedback mechanism that promotes th2 immune response. Front Immunol. 2021;12:672312. doi:10.3389/fimmu.2021.672312.
  • Meisser SS, Altunbulakli C, Bandier J, Opstrup MS, Castro-Giner F, Akdis M, Bonefeld CM, Johansen JD, Akdis CA. Skin barrier damage after exposure to paraphenylenediamine. J Allergy Clin Immunol. 2020;145(2):619–631.e612. doi:10.1016/j.jaci.2019.11.023.
  • Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity. 2019;50(4):975–991. doi:10.1016/j.immuni.2019.03.018.
  • Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–1605. doi:10.1111/all.14318.
  • Coskun M. Intestinal epithelium in inflammatory bowel disease. Front Med (Lausanne). 2014;1:24. doi:10.3389/fmed.2014.00024.
  • Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke J-D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56(1):61–72. doi:10.1136/gut.2006.094375.
  • Luettig J, Rosenthal R, Barmeyer C, Schulzke JD. Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation. Tissue Barriers. 2015;3(1–2):e977176. doi:10.4161/21688370.2014.977176.
  • Schoultz I, Keita Å. Cellular and molecular therapeutic targets in inflammatory bowel disease-focusing on intestinal barrier function. Cells. 2019;8(2):193. doi:10.3390/cells8020193.
  • Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr. 2021;8:717925. doi:10.3389/fnut.2021.717925.
  • Greuter T, Straumann A, Fernandez-Marrero Y, Germic N, Hosseini A, Yousefi S, Simon D, Collins MH, Bussmann C, Chehade M, et al. Characterization of eosinophilic esophagitis variants by clinical, histological and molecular analyses: a cross-sectional multi-center study. Allergy. 2022;77(8):2520–2533. doi:10.1111/all.15233.
  • Simon D, Page B, Vogel M, Bussmann C, Blanchard C, Straumann A, Simon H-U. Evidence of an abnormal epithelial barrier in active, untreated and corticosteroid-treated eosinophilic esophagitis. Allergy. 2018;73(1):239–247. doi:10.1111/all.13244.
  • Masterson JC, Biette KA, Hammer JA, Nguyen N, Capocelli KE, Saeedi BJ, Harris RF, Fernando SD, Hosford LB, Kelly CJ, et al. Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. J Clin Invest. 2019;129(8):3224–3235. doi:10.1172/JCI126744.
  • Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, Marchi N, van Boxel-dezaire AHH. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun. 2018;507(1–4):274–279. doi:10.1016/j.bbrc.2018.11.021.
  • Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Carteni M, Generoso M, et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55(5):1443–1449. doi:10.2337/db05-1593.
  • Horton F, Wright J, Smith L, Hinton PJ, Robertson MD. Increased intestinal permeability to oral chromium (51 Cr) -EDTA in human type 2 diabetes. Diabet Med. 2014;31(5):559–563. doi:10.1111/dme.12360.
  • Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? The Journal of Nutritional Biochemistry. 2019;63:101–108. doi:10.1016/j.jnutbio.2018.10.003.
  • Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–1383. doi:10.1126/science.aar3318.
  • Wilbrink J, Bernards N, Mujagic Z, van Avesaat M, Pijls K, Klaassen T, van Eijk H, Nienhuijs S, Stronkhorst A, Wilms E, et al. Intestinal barrier function in morbid obesity: results of a prospective study on the effect of sleeve gastrectomy. International Journal of Obesity. 2020;44(2):368–376. doi:10.1038/s41366-019-0492-z.
  • Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, Gabrieli ML, Perotti G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology. 2009;49(6):1877–1887. doi:10.1002/hep.22848.
  • Lin R, Zhou L, Zhang J, Wang B. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis. Int J Clin Exp Pathol. 2015;8:5153–5160.
  • Keshavarzian A, Holmes EW, Patel M, Iber F, Fields JZ, Pethkar S. Leaky gut in alcoholic cirrhosis: a possible mechanism for alcohol-induced liver damage. Am J Gastroenterol. 1999;94(1):200–207. doi:10.1111/j.1572-0241.1999.00797.x.
  • Wang HY, Chi C, Xu YQ, Wang C, Wang TY, Lv D, Li X. Occludin endocytosis is involved in the disruption of the intestinal epithelial barrier in a mouse model of alcoholic steatohepatitis. Journal of Digestive Diseases. 2019;20(9):476–485. doi:10.1111/1751-2980.12800.
  • van Ijzendoorn, van Iscd P, van Ijzendoorn SCD. The Intestinal Barrier in Parkinson’s Disease: current State of Knowledge. J Parkinsons Dis. 2019;9(s2):S323–s329. doi:10.3233/JPD-191707.
  • Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3(4):e12356. doi:10.14814/phy2.12356.
  • Kelly JR, Borre Y, OB C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016;82:109–118. doi:10.1016/j.jpsychires.2016.07.019.
  • Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55–62. doi:10.1016/j.jad.2012.02.023.
  • Galán C, Thibaudon M. Climate change, airborne pollen, and pollution. Allergy. 2020;75(9):2354–2356. doi:10.1111/all.14538.
  • Zhao C, Wang Y, Su Z, Pu W, Niu M, Song S, Wei L, Ding Y, Xu L, Tian M, et al. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci Total Environ. 2020;730:139145. doi:10.1016/j.scitotenv.2020.139145.
  • Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, Dreher A, Tan HTT, Quesniaux VF, Ryffel B, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol. 2018;142(3):942–958. doi:10.1016/j.jaci.2017.11.044.
  • Murrison LB, Brandt EB, Myers JB, Hershey GKK. Environmental exposures and mechanisms in allergy and asthma development. J Clin Invest. 2019;129(4):1504–1515. doi:10.1172/JCI124612.
  • Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute respiratory barrier disruption by ozone exposure in mice. Front Immunol. 2019;10:2169. doi:10.3389/fimmu.2019.02169.
  • Zhu T, Zhang X, Chen X, et al. Nasal DNA methylation differentiates severe from nonsevere asthma in African American children. Allergy. 2021; 76(6):1836–1845.
  • Liu Y, Pan J, Zhang H, Shi C, Li G, Peng Z, Ma J, Zhou Y, Zhang L. Short-term exposure to ambient air pollution and asthma mortality. Am J Respir Crit Care Med. 2019;200(1):24–32. doi:10.1164/rccm.201810-1823OC.
  • Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. doi:10.1016/j.jhazmat.2019.121575.
  • Xing Y, Wang MH, Leung T-F, Wong C-K, Roponen M, Schaub B, Li J, Wong GWK. Poultry exposure and environmental protection against asthma in rural children. Allergy. 2022;77(10):2949–2960. doi:10.1111/all.15365.
  • Cavaleiro Rufo J, Paciência I, Hoffimann E, Moreira A, Barros H, Ribeiro AI. The neighbourhood natural environment is associated with asthma in children: a birth cohort study. Allergy. 2021;76(1):348–358. doi:10.1111/all.14493.
  • Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: a link to respiratory disease. Toxicol Lett. 2020;334:14–20. doi:10.1016/j.toxlet.2020.09.007.
  • Kim J, Kim YC, Ham J, Sohn K-H, Lee S-Y, Chung DH, Cho S-H, Kang HR, Kim HY. The effect of air pollutants on airway innate immune cells in patients with asthma. Allergy. 2020;75(9):2372–2376. doi:10.1111/all.14323.
  • Bauer RN, Diaz-Sanchez D, Jaspers I. Effects of air pollutants on innate immunity: the role of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. J Allergy Clin Immunol. 2012;129(1):14–24; quiz 25–16. doi:10.1016/j.jaci.2011.11.004.
  • Daellenbach KR, Uzu G, Jiang J, Cassagnes L-E, Leni Z, Vlachou A, Stefenelli G, Canonaco F, Weber S, Segers A, et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature. 2020;587(7834):414–419. doi:10.1038/s41586-020-2902-8.
  • Dagher Z, Garçon G, Billet S, Gosset P, Ledoux F, Courcot D, Aboukais A, Shirali P. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. Toxicology. 2006;225(1):12–24. doi:10.1016/j.tox.2006.04.038.
  • Wang G, Zhang X, Liu X, Zheng J, Chen R, Kan H. Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett. 2019;301:133–145. doi:10.1016/j.toxlet.2018.11.010.
  • Han X, Zhuang Y. PM2.5 induces autophagy-mediated cell apoptosis via PI3K/AKT/mTOR signaling pathway in mice bronchial epithelium cells. Exp Ther Med. 2021;21(1):1. doi:10.3892/etm.2020.9433.
  • Zhang L, He X, Xiong Y, et al. Transcriptome-wide profiling discover: PM2.5 aggravates airway dysfunction through epithelial barrier damage regulated by Stanniocalcin 2 in an OVA-induced model. Ecotoxicol Environ Saf. 2021;220:112408. doi:10.1016/j.ecoenv.2021.112408.
  • Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy. 2016;46(1):142–152. doi:10.1111/cea.12597.
  • Xian M, Ma S, Wang K, et al. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol Res. 2020;12(1):56–71. doi:10.4168/aair.2020.12.1.56.
  • Park SK, Yeon SH, Choi M-R, et al. Urban particulate matters may affect endoplasmic reticulum stress and tight junction disruption in nasal epithelial cells. Am J Rhinol Allergy. 2021;35(6):817–829. doi:10.1177/19458924211004006.
  • Bowatte G, Lodge C, Lowe AJ, Erbas B, Perret J, Abramson MJ, Matheson M, Dharmage SC. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta-analysis of birth cohort studies. Allergy. 2015;70(3):245–256. doi:10.1111/all.12561.
  • Salvi S, Barnes PJ. Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest. 2010;138(1):3–6. doi:10.1378/chest.10-0645.
  • Stapleton EM, Kizhakke Puliyakote A, Metwali N, Jeronimo M, Thornell IM, Manges RB, Bilas M, Kamal Batcha MA, Kumaravel MS, Durairaj K, et al. Lung function of primary cooks using LPG or biomass and the effect of particulate matter on airway epithelial barrier integrity. Environ Res. 2020;189:109888. doi:10.1016/j.envres.2020.109888.
  • Caraballo JC, Yshii C, Westphal W, Moninger T, Comellas AP. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology. 2011;16(2):340–349. doi:10.1111/j.1440-1843.2010.01910.x.
  • Hüls A, Abramson MJ, Sugiri D, Fuks K, Krämer U, Krutmann J, Schikowski T. Nonatopic eczema in elderly women: effect of air pollution and genes. J Allergy Clin Immunol. 2019;143(1):378–385.e379. doi:10.1016/j.jaci.2018.09.031.
  • Yao TC, Huang HY, Pan WC, Wu C-Y, Tsai S-Y, Hung C-Y, Lu K-L, Chang‐Chien J, Tseng C-L, Wu C-D, et al. Association of prenatal exposure to fine particulate matter pollution with childhood eczema. Allergy. 2021;76(7):2241–2245. doi:10.1111/all.14738.
  • Weng CM, Wang CH, Lee MJ, He J-R, Huang H-Y, Chao M-W, Chung KF, Kuo H-P. Aryl hydrocarbon receptor activation by diesel exhaust particles mediates epithelium-derived cytokines expression in severe allergic asthma. Allergy. 2018;73(11):2192–2204. doi:10.1111/all.13462.
  • Brandt EB, Bolcas PE, Ruff BP, Khurana Hershey GK. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy. 2020;75(9):2254–2266. doi:10.1111/all.14181.
  • Takenaka H, Zhang K, Diaz-Sanchez D, Tsien A, Saxon A. Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. J Allergy Clin Immunol. 1995;95(1 Pt 1):103–115. doi:10.1016/S0091-6749(95)70158-3.
  • Van Den Broucke S, Vanoirbeek J, Alfaro-Moreno E, Hoet P. Contribution of mast cells in irritant-induced airway epithelial barrier impairment in vitro. Toxicol Ind Health. 2020;36(10):823–834. doi:10.1177/0748233720948771.
  • Smyth T, Veazey J, Eliseeva S, Chalupa D, Elder A, Georas SN. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Particle and Fibre Toxicology. 2020;17(1):52. doi:10.1186/s12989-020-00383-x.
  • Kim N, Han DH, Suh M-W, Lee JH, Oh S-H, Park MK. Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells. Environ Pollut. 2019;248:736–742. doi:10.1016/j.envpol.2019.02.082.
  • Hidaka T, Ogawa E, Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Fujimura T, Aiba S, Nakayama K, Okuyama R, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol. 2017;18(1):64–73. doi:10.1038/ni.3614.
  • Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YM. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell Biochem. 2002;234-235(1–2):71–80. doi:10.1023/A:1015973530559.
  • Michaudel C, Fauconnier L, Julé Y, Ryffel B. Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice. Sci Rep. 2018;8(1):10611. doi:10.1038/s41598-018-28261-9.
  • Sunyer J, Basagaña X, Belmonte J, Antó JM. Effect of nitrogen dioxide and ozone on the risk of dying in patients with severe asthma. Thorax. 2002;57(8):687–693. doi:10.1136/thorax.57.8.687.
  • Achakulwisut P, Brauer M, Hystad P, Anenberg SC. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. The Lancet Planetary Health. 2019;3(4):e166–e178. doi:10.1016/S2542-5196(19)30046-4.
  • Lopez DJ, Lodge CJ, Bui DS, et al. Association between ambient air pollution and development and persistence of atopic and non-atopic eczema in a cohort of adults. Allergy. 2021;76(8):2524–2534. doi:10.1111/all.14783.
  • Joelsson JP, Kricker JA, Arason AJ, et al. Azithromycin ameliorates sulfur dioxide-induced airway epithelial damage and inflammatory responses. Respir Res. 2020;21(1):233. doi:10.1186/s12931-020-01489-8.
  • Uysal N, Schapira RM. Effects of ozone on lung function and lung diseases. Curr Opin Pulm Med. 2003;9(2):144–150. doi:10.1097/00063198-200303000-00009.
  • Kim BG, Lee PH, Lee SH, Park CS, Jang AS. Impact of ozone on claudins and tight junctions in the lungs. Environ Toxicol. 2018;33(7):798–806. doi:10.1002/tox.22566.
  • Que LG, Stiles JV, Sundy JS, Foster WM. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans. J Appl Physiol. 2011 2011;111(3):679–687. doi:10.1152/japplphysiol.00337.2011.
  • Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol. 2021;33(5):177–192. doi:10.1080/08958378.2021.1956021.
  • Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, et al. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biology. 2021;46:102092. doi:10.1016/j.redox.2021.102092.
  • He L, Cui X, Li Z, et al. Malondialdehyde in nasal fluid: a biomarker for monitoring asthma control in relation to air pollution exposure. Environmental Science & Technology. 2020;54(18):11405–11413.
  • Hendricks AJ, Eichenfield LF, Shi VY. The impact of airborne pollution on atopic dermatitis: a literature review. Br J Dermatol. 2020;183(1):16–23. doi:10.1111/bjd.18781.
  • Farraia M, Cavaleiro Rufo J, Paciencia I, et al. Human volatilome analysis using eNose to assess uncontrolled asthma in a clinical setting. Allergy. 2020;75(7):1630–1639. doi:10.1111/all.14207.
  • Kim J, Han Y, Ahn JH, et al. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis. Br J Dermatol. 2016;175(2):357–363. doi:10.1111/bjd.14357.
  • D’Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario N, Haahtela T, Galan C, Pawankar R, Murrieta‐Aguttes M, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy. 2020;75(9):2219–2228. doi:10.1111/all.14476.
  • Eguiluz-Gracia I, Mathioudakis AG, Bartel S, Vijverberg SJH, Fuertes E, Comberiati P, Cai YS, Tomazic PV, Diamant Z, Vestbo J, et al. The need for clean air: the way air pollution and climate change affect allergic rhinitis and asthma. Allergy. 2020;75(9):2170–2184. doi:10.1111/all.14177.
  • Cecchi L, D’Amato G, Annesi-Maesano I. Climate change and outdoor aeroallergens related to allergy and asthma: taking the exposome into account. Allergy. 2020;75(9):2361–2363. doi:10.1111/all.14286.
  • Rauer D, Gilles S, Wimmer M, Frank U, Mueller C, Musiol S, Vafadari B, Aglas L, Ferreira F, Schmitt‐Kopplin P, et al. Ragweed plants grown under elevated CO 2 levels produce pollen which elicit stronger allergic lung inflammation. Allergy. 2021;76(6):1718–1730. doi:10.1111/all.14618.
  • Gisler A, Eeftens M, de Hoogh K, Vienneau D, Salem Y, Yammine S, Jakob J, Gorlanova O, Decrue F, Gehrig R, et al. Pollen exposure is associated with risk of respiratory symptoms during the first year of life. Allergy. 2022. doi:10.1111/all.15284.
  • D’Amato G, Liccardi G, Frenguelli G. Thunderstorm-asthma and pollen allergy. Allergy. 2007;62(1):11–16. doi:10.1111/j.1398-9995.2006.01271.x.
  • Hew M, Lee J, Susanto NH, Prasad S, Bardin PG, Barnes S, Ruane L, Southcott AM, Gillman A, Young A, et al. The 2016 Melbourne thunderstorm asthma epidemic: risk factors for severe attacks requiring hospital admission. Allergy. 2019;74(1):122–130. doi:10.1111/all.13609.
  • Hew M, Lee J, Varese N, Aui PM, McKenzie CI, Wines BD, Aumann H, Rolland JM, Mark Hogarth P, Zelm MC, et al. Epidemic thunderstorm asthma susceptibility from sensitization to ryegrass (Lolium perenne) pollen and major allergen Lol p 5. Allergy. 2020;75(9):2369–2372. doi:10.1111/all.14319.
  • D’Amato G, Annesi-Maesano I, Cecchi L, D’Amato M. Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy. 2019;74(1):9–11. doi:10.1111/all.13616.
  • Boğan M, Kul S, Al B, Oktay MM, Akpinar Elçi M, Pinkerton KE, Bayram H. Effect of desert dust storms and meteorological factors on respiratory diseases. Allergy. 2022;77(7):2243–2246. doi:10.1111/all.15298.
  • D’Amato G, Akdis CA. Desert dust and respiratory diseases: further insight on the epithelial barrier hypothesis. Allergy. 2022. doi:10.1111/all.15392.
  • Itazawa T, Kanatani KT, Hamazaki K, Inadera H, Tsuchida A, Tanaka T, Nakayama T, Go T, Onishi K, Kurozawa Y, et al. The impact of exposure to desert dust on infants’ symptoms and countermeasures to reduce the effects. Allergy. 2020;75(6):1435–1445. doi:10.1111/all.14166.
  • Tatsuta M, Kan-O K, Ishii Y, Yamamoto N, Ogawa T, Fukuyama S, Ogawa A, Fujita A, Nakanishi Y, Matsumoto K, et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res. 2019;20(1):251. doi:10.1186/s12931-019-1226-4.
  • Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: role of cigarette smoke exposure. Am J Respir Cell Mol Biol. 2018;58(2):157–169. doi:10.1165/rcmb.2017-0200TR.
  • Nur Husna SM, Siti Sarah CO, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Reduced occludin and claudin-7 expression is associated with urban locations and exposure to second-hand smoke in allergic rhinitis patients. Sci Rep. 2021;11(1):1245. doi:10.1038/s41598-020-79208-y.
  • Nishida K, Brune KA, Putcha N, Mandke P, O’Neal WK, Shade D, Srivastava V, Wang M, Lam H, An SS, et al. Cigarette smoke disrupts monolayer integrity by altering epithelial cell-cell adhesion and cortical tension. Am J Physiol Lung Cell Mol Physiol. 2017;313(3):L581–L591. doi:10.1152/ajplung.00074.2017.
  • Danov O, Wolff M, Bartel S, Böhlen S, Obernolte H, Wronski S, Jonigk D, Hammer B, Kovacevic D, Reuter S, et al. Cigarette smoke affects dendritic cell populations, epithelial barrier function, and the immune response to viral infection with H1N1. Front Med (Lausanne). 2020;7:571003. doi:10.3389/fmed.2020.571003.
  • Lee YJ, Na CJ, Botao L, Kim KH, Son YS. Quantitative insights into major constituents contained in or released by electronic cigarettes: propylene glycol, vegetable glycerin, and nicotine. Sci Total Environ. 2020;703:134567. doi:10.1016/j.scitotenv.2019.134567.
  • Kalininskiy A, Kittel J, Nacca NE, Misra RS, Croft DP, McGraw MD. E-cigarette exposures, respiratory tract infections, and impaired innate immunity: a narrative review. Pediatr Med. 2021;4:5.
  • Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A, Willeford A, Das S, Singh P, Yong Z, Lee JH, et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R834–R847. doi:10.1152/ajpregu.00270.2017.
  • Woodall M, Jacob J, Kalsi KK, Schroeder V, Davis E, Kenyon B, Khan I, Garnett JP, Tarran R, Baines DL, et al. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 2020;319(6):L957–L967. doi:10.1152/ajplung.00123.2020.
  • Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K, Blanquet-Diot S, Mercier-Bonin M. Microplastics in the human digestive environment: a focus on the potential and challenges facing in vitro gut model development. J Hazard Mater. 2021;415:125632. doi:10.1016/j.jhazmat.2021.125632.
  • Yee MS, Hii LW, Looi CK, Lim W-M, Wong S-F, Kok -Y-Y, Tan B-K, Wong C-Y, Leong C-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials (Basel). 2021;11(2):496. doi:10.3390/nano11020496.
  • Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M. Atmospheric microplastics: a review on current status and perspectives. Earth-Science Reviews. 2020;203:103118. doi:10.1016/j.earscirev.2020.103118.
  • Facciolà A, Visalli G, Pruiti Ciarello M, Di Pietro A. Newly emerging airborne pollutants: current knowledge of health impact of micro and nanoplastics. Int J Environ Res Public Health. 2021;18(6):2997. doi:10.3390/ijerph18062997.
  • Das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev. 2020;49(14):5058–5100. doi:10.1039/c8cs00948a.
  • Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, Strickland DH, von Garnier C. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol. 2013;49(1):67–77. doi:10.1165/rcmb.2012-0387OC.
  • Yang S, Cheng Y, Chen Z, et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model. Ecotoxicology and Environmental Safety. 2021;226:112837. doi:10.1016/j.ecoenv.2021.112837.
  • Huang Z, Weng Y, Shen Q, Zhao Y, Jin Y. Microplastic: a potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment. Sci Total Environ. 2021;785:147365. doi:10.1016/j.scitotenv.2021.147365.
  • Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ. 2019;649:308–317. doi:10.1016/j.scitotenv.2018.08.353.
  • Li B, Ding Y, Cheng X, Sheng D, Xu Z, Rong Q, Wu Y, Zhao H, Ji X, Zhang Y, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020;244:125492. doi:10.1016/j.chemosphere.2019.125492.
  • Danopoulos E, Twiddy M, West R, Rotchell JM. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 2021;427:127861. doi:10.1016/j.jhazmat.2021.127861.
  • Domenech J, Hernández A, Rubio L, Marcos R, Cortés C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Archives of Toxicology. 2020;94(9):2997–3012. doi:10.1007/s00204-020-02805-3.
  • Forte M, Iachetta G, Tussellino M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro. 2016;31:126–136. doi:10.1016/j.tiv.2015.11.006.
  • Mahler GJ, Esch MB, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7(4):264–271. doi:10.1038/nnano.2012.3.
  • Vita AA, Royse EA, Pullen NA. Nanoparticles and danger signals: oral delivery vehicles as potential disruptors of intestinal barrier homeostasis. J Leukoc Biol. 2019;106(1):95–103. doi:10.1002/JLB.3MIR1118-414RR.
  • Pedata P, Ricci G, Malorni L, Venezia A, Cammarota M, Volpe MG, Iannaccone N, Guida V, Schiraldi C, Romano M, et al. In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Food Res Int. 2019;119:634–642. doi:10.1016/j.foodres.2018.10.041.
  • Cornu R, Chrétien C, Pellequer Y, Martin H, Béduneau A. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Archives of Toxicology. 2020;94(4):1191–1202. doi:10.1007/s00204-020-02694-6.
  • Lee YG, Lee SH, Hong J, Lee PH, Jang AS. Titanium dioxide particles modulate epithelial barrier protein, Claudin 7 in asthma. Mol Immunol. 2021;132:209–216. doi:10.1016/j.molimm.2021.01.004.
  • Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2020;319(3):L481–l496. doi:10.1152/ajplung.00104.2020.
  • Kampfer AAM, Urban P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro. 2020;63:104738. doi:10.1016/j.tiv.2019.104738.
  • Gokulan K, Williams K, Orr S, Khare S. Human intestinal tissue explant exposure to silver nanoparticles reveals sex dependent alterations in inflammatory responses and epithelial cell permeability. Int J Mol Sci. 2020;22(1):9. doi:10.3390/ijms22010009.
  • Lahiani MH, Khare S, Cerniglia CE, Boy R, Ivanov IN, Khodakovskaya M. The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. Nanoscale. 2019;11(8):3639–3655. doi:10.1039/C8NR08604D.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Moller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect. 2009;117(5):703–708. doi:10.1289/ehp.11922.
  • Philbrook NA, Walker VK, Afrooz AR, Saleh NB, Winn LM. Investigating the effects of functionalized carbon nanotubes on reproduction and development in drosophila melanogaster and CD-1 mice. Reprod Toxicol. 2011;32(4):442–448. doi:10.1016/j.reprotox.2011.09.002.
  • Hassaan MA, El Nemr A. Pesticides pollution: classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research. 2020;46(3):207–220. doi:10.1016/j.ejar.2020.08.007.
  • Jayaraj R, Megha P, Sreedev P. Review article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 2016;9(3–4):90–100. doi:10.1515/intox-2016-0012.
  • Keswani C, Dilnashin H, Birla H, Roy P, Tyagi RK, Singh D, Rajput VD, Minkina T, Singh SP. Global footprints of organochlorine pesticides: a pan-global survey. Environmental Geochemistry and Health. 2022;44(1):149–177. doi:10.1007/s10653-021-00946-7.
  • Maisano M, Cappello T, Oliva S, Natalotto A, Giannetto A, Parrino V, Battaglia P, Romeo T, Salvo A, Spanò N, et al. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the mediterranean sea. Mar Environ Res. 2016;121:40–48. doi:10.1016/j.marenvres.2016.03.003.
  • Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2009;2(1):1–12. doi:10.2478/v10102-009-0001-7.
  • Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC. Global DNA hypomethylation is associated with high serum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect. 2008;116(11):1547–1552. doi:10.1289/ehp.11338.
  • Pastor Belda M, González-Franco JA, Rubio R, Campillo N, Hernández-Córdoba M, Torres C, Pérez-Cárceles MD, Viñas P. Occurrence of organochlorine pesticides in human tissues assessed using a microextraction procedure and gas chromatography–mass spectrometry. Journal of Analytical Toxicology. 2020;45(1):84–92. doi:10.1093/jat/bkaa036.
  • Wang N, Shi L, Kong D, Cai D, Cao Y, Liu Y, Pang G, Yu R. Accumulation levels and characteristics of some pesticides in human adipose tissue samples from Southeast China. Chemosphere. 2011;84(7):964–971. doi:10.1016/j.chemosphere.2011.05.062.
  • Bräuner EV, Raaschou-Nielsen O, Gaudreau E, Leblanc A, Tjønneland A, Overvad K, Sørensen M. Predictors of adipose tissue concentrations of organochlorine pesticides in a general Danish population. Journal of Exposure Science & Environmental Epidemiology. 2012;22(1):52–59. doi:10.1038/jes.2011.39.
  • Barrón Cuenca J, de Oliveira Galvão Mf, Ünlü Endirlik B, Tirado N, Dreij K, de Oliveira Galvão MF. In vitro cytotoxicity and genotoxicity of single and combined pesticides used by Bolivian farmers. Environ Mol Mutagen. 2022;63(1):4–17. doi:10.1002/em.22468.
  • Ledirac N, Antherieu S, d’Uby AD, Caron J-C, Rahmani R, d’Uby AD. Effects of organochlorine insecticides on map kinase pathways in human hacat keratinocytes: key role of reactive oxygen species. Toxicological Sciences. 2005;86(2):444–452. doi:10.1093/toxsci/kfi192.
  • Ilboudo S, Fouche E, Rizzati V, Toé AM, Gamet-Payrastre L, Guissou PI. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicology Reports. 2014;1:474–489. doi:10.1016/j.toxrep.2014.07.008.
  • Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B, et al. Organochlorine pesticide dieldrin suppresses cellular interferon-related antiviral gene expression. Toxicol Sci. 2021;182(2):260–274. doi:10.1093/toxsci/kfab064.
  • Craddock HA, Huang D, Turner PC, Quirós-Alcalá L, Payne-Sturges DC. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environmental Health. 2019;18(1):7. doi:10.1186/s12940-018-0441-7.
  • Zhao GP, Wang XY, Li JW, Wang R, Ren F-Z, Pang G-F, Li Y-X. Imidacloprid increases intestinal permeability by disrupting tight junctions. Ecotoxicol Environ Saf. 2021;222:112476. doi:10.1016/j.ecoenv.2021.112476.
  • Folletti I, Zock JP, Moscato G, Siracusa A. Asthma and rhinitis in cleaning workers: a systematic review of epidemiological studies. J Asthma. 2014;51(1):18–28. doi:10.3109/02770903.2013.833217.
  • Medina-Ramón M, et al. Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case-control study. Occup Environ Med. 2005;62(9):598–606. doi:10.1136/oem.2004.017640.
  • Zock JP, Plana E, Jarvis D, Antó JM, Kromhout H, Kennedy SM, Künzli N, Villani S, Olivieri M, Torén K, et al. The use of household cleaning sprays and adult asthma: an international longitudinal study. Am J Respir Crit Care Med. 2007;176(8):735–741. doi:10.1164/rccm.200612-1793OC.
  • Dumas O, Wiley AS, Quinot C, Varraso R, Zock J-P, Henneberger PK, Speizer FE, Le Moual N, Camargo CA. Occupational exposure to disinfectants and asthma control in US nurses. Eur Respir J. 2017;50(4):1700237. doi:10.1183/13993003.00237-2017.
  • Siracusa A, De Blay F, Folletti I, Moscato G, Olivieri M, Quirce S, Raulf-Heimsoth M, Sastre J, Tarlo SM, Walusiak-Skorupa J, et al. Asthma and exposure to cleaning products - a European academy of allergy and clinical immunology task force consensus statement. Allergy. 2013;68(12):1532–1545. doi:10.1111/all.12279.
  • Couto M, Bernard A, Delgado L, Drobnic F, Kurowski M, Moreira A, Rodrigues‐Alves R, Rukhadze M, Seys S, Wiszniewska M, et al. Health effects of exposure to chlorination by-products in swimming pools. Allergy. 2021;76(11):3257–3275. doi:10.1111/all.15014.
  • Tuck SA, Ramos-Barbón D, Campbell H, McGovern T, Karmouty-Quintana H, Martin JG. Time course of airway remodelling after an acute chlorine gas exposure in mice. Respir Res. 2008;9(1):61. doi:10.1186/1465-9921-9-61.
  • Shim JS, Lee HS, Park DE, Won Lee J, Bae B, Chang Y, Kim J, Kim HY, Kang H-R. Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11c intermediate macrophages. Allergy. 2020;75(2):381–391. doi:10.1111/all.14017.
  • Cullinan P, Harris JM, Newman Taylor AJ, Hole AM, Jones M, Barnes F, Jolliffe G. An outbreak of asthma in a modern detergent factory. Lancet. 2000;356(9245):1899–1900. doi:10.1016/S0140-6736(00)03264-5.
  • Brant A, Hole A, Cannon J, et al. Occupational asthma caused by cellulase and lipase in the detergent industry. Occup Environ Med. 2004;61(9):793–795. doi:10.1136/oem.2003.011288.
  • Hole AM. Occupational asthma caused by bacillary amylase used in the detergent industry. Occup Environ Med. 2000;57(12):840–842. doi:10.1136/oem.57.12.840.
  • Wang M, Tan G, Eljaszewicz A, Meng Y, Wawrzyniak P, Acharya S, Altunbulakli C, Westermann P, Dreher A, Yan L, et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J Allergy Clin Immunol. 2019;143(5):1892–1903. doi:10.1016/j.jaci.2018.11.016.
  • Corradi M, Gergelova P, Di Pilato E, Folesani G, Goldoni M, Andreoli R, Selis L, Mutti A. Effect of exposure to detergents and other chemicals on biomarkers of pulmonary response in exhaled breath from hospital cleaners: a pilot study. Int Arch Occup Environ Health. 2012;85(4):389–396. doi:10.1007/s00420-011-0686-8.
  • Halmos EP, Mack A, Gibson PR. Review article: emulsifiers in the food supply and implications for gastrointestinal disease. Aliment Pharmacol Ther. 2019;49(1):41–50. doi:10.1111/apt.15045.
  • Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol. 2020;319(5):G589–G608. doi:10.1152/ajpgi.00245.2020.
  • Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr. 2020;60(11):1769–1782. doi:10.1080/10408398.2019.1596878.
  • Hrncirova L, Machova V, Trckova E, Krejsek J, Hrncir T. Food preservatives induce proteobacteria dysbiosis in human-microbiota associated nod2-deficient mice. Microorganisms. 2019;7(10):383. doi:10.3390/microorganisms7100383.
  • Lock JY, Carlson TL, Wang CM, Chen A, Carrier RL. Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci Rep. 2018;8(1):10008. doi:10.1038/s41598-018-27957-2.
  • Roberts CL, Keita AV, Duncan SH, O’Kennedy N, Soderholm JD, Rhodes JM, Campbell BJ. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut. 2010;59(10):1331–1339. doi:10.1136/gut.2009.195370.
  • Zhu YT, Yuan YZ, Feng QP, Hu M-Y, Li W-J, Wu X, Xiang S-Y, Yu S-Q. Food emulsifier polysorbate 80 promotes the intestinal absorption of mono-2-ethylhexyl phthalate by disturbing intestinal barrier. Toxicol Appl Pharmacol. 2021;414:115411. doi:10.1016/j.taap.2021.115411.
  • Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–96. doi:10.1038/nature14232.
  • Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66(8):1414–1427. doi:10.1136/gutjnl-2016-313099.
  • Chassaing B, Compher C, Bonhomme B, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology. 2022;162(3):743–756.
  • Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed Engl. 2014;53(39):10316–10329. doi:10.1002/anie.201308808.
  • Aerts O, Goossens A, Lambert J, Lepoittevin JP. Contact allergy caused by isothiazolinone derivatives: an overview of non-cosmetic and unusual cosmetic sources. Eur J Dermatol. 2017;27(2):115–122. doi:10.1684/ejd.2016.2951.
  • Van Steenkiste E, Goossens A, Meert H, Apers S, Aerts O. Airborne-induced lymphomatoid contact dermatitis caused by methylisothiazolinone. Contact Dermatitis. 2015;72(4):237–240. doi:10.1111/cod.12359.
  • Recke A, Recke AL, Jappe U. Periorbital contact dermatitis caused by octylisothiazolinone in a floor-cleaning agent. Contact Dermatitis. 2015;72(5):339–341. doi:10.1111/cod.12351.
  • Lee EB, Lobl M, Ford A, DeLeo V, Adler BL, Wysong A. What Is New in Occupational Allergic Contact Dermatitis in the Year of the COVID Pandemic? Curr Allergy Asthma Rep. 2021;21(4):26. doi:10.1007/s11882-021-01000-3.
  • Sandvik A, Holm J. Severe allergic contact dermatitis in a detergent production worker caused by exposure to methylisothiazolinone. Contact Dermatitis. 2019;80(4):243–245. doi:10.1111/cod.13182.
  • Xian M, Wawrzyniak P, Rückert B, Duan S, Meng Y, Sokolowska M, Globinska A, Zhang L, Akdis M, Akdis CA, et al. Anionic surfactants and commercial detergents decrease tight junction barrier integrity in human keratinocytes. J Allergy Clin Immunol. 2016;138(3):890–893.e899. doi:10.1016/j.jaci.2016.07.003.
  • Douwes J, Slater T, Shanthakumar M, McLean D, Firestone RT, Judd L, Pearce N. Determinants of hand dermatitis, urticaria and loss of skin barrier function in professional cleaners in New Zealand. Int J Occup Environ Health. 2017;23(2):110–119. doi:10.1080/10773525.2018.1427307.
  • Erdem Y, Inal S, Sivaz O, Copur S, Boluk KN, Ugurer E, Kaya HE, Gulsunay IE, Sekerlisoy G, Vural O, et al. How does working in pandemic units affect the risk of occupational hand eczema in healthcare workers during the coronavirus disease-2019 (COVID-19) pandemic: a comparative analysis with nonpandemic units. Contact Dermatitis. 2021;85(2):215–224. doi:10.1111/cod.13853.
  • Adisesh A, Murphy E, Barber CM, Ayres JG. Occupational asthma and rhinitis due to detergent enzymes in healthcare. Occup Med (Lond). 2011;61(5):364–369. doi:10.1093/occmed/kqr107.
  • Doyle AD, Masuda MY, Pyon GC, Luo H, Putikova A, LeSuer WE, Flashner S, Rank MA, Nakagawa H, Kita H, et al. Detergent exposure induces epithelial barrier dysfunction and eosinophilic inflammation in the esophagus. Allergy. 2022. doi:10.1111/all.15457.
  • Simonsen AB, Ruge IF, Quaade AS, Johansen JD, Thyssen JP, Zachariae C. Increased occurrence of hand eczema in young children following the Danish hand hygiene recommendations during the COVID-19 pandemic. Contact Dermatitis. 2021;84(3):144–152. doi:10.1111/cod.13727.
  • Montero-Vilchez T, Martinez-Lopez A, Cuenca-Barrales C, Quiñones‐Vico MI, Sierra‐Sanchez A, Molina‐Leyva A, Gonçalo M, Cambil‐Martin J, Arias‐Santiago S. Assessment of hand hygiene strategies on skin barrier function during COVID-19 pandemic: a randomized clinical trial. Contact Dermatitis. 2022;86(4):276–285. doi:10.1111/cod.14034.
  • Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–360. doi:10.1016/S0140-6736(20)31286-1.
  • Chalmers JR, Haines RH, Bradshaw LE, Montgomery AA, Thomas KS, Brown SJ, Ridd MJ, Lawton S, Simpson EL, Cork MJ, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020;395(10228):962–972. doi:10.1016/S0140-6736(19)32984-8.
  • Brough HA, Lanser BJ, Sindher SB, Teng JMC, Leung DYM, Venter C, Chan SM, Santos AF, Bahnson HT, Guttman‐Yassky E, et al. Early intervention and prevention of allergic diseases. Allergy. 2022;77(2):416–441. doi:10.1111/all.15006.
  • Rinaldi AO, Korsfeldt A, Ward S, Burla D, Dreher A, Gautschi M, Stolpe B, Tan G, Bersuch E, Melin D, et al. Electrical impedance spectroscopy for the characterization of skin barrier in atopic dermatitis. Allergy. 2021;76(10):3066–3079. Online ahead of print. doi:10.1111/all.14842.
  • Rinaldi AO, Morita H, Wawrzyniak P, Dreher A, Grant S, Svedenhag P, Akdis CA. Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy. 2019;74(10):1934–1944. doi:10.1111/all.13824.
  • Liu Y, Lunter DJ. Systematic investigation of the effect of non-ionic emulsifiers on skin by confocal raman spectroscopy—a comprehensive lipid analysis. Pharmaceutics. 2020;12(3):223. doi:10.3390/pharmaceutics12030223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.