89
Views
0
CrossRef citations to date
0
Altmetric
Review

The stratum corneum barrier: impaired function in relation to associated lipids and proteins

, , , &
Article: 2361197 | Received 03 Apr 2024, Accepted 23 May 2024, Published online: 31 May 2024

References

  • Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19(1):19–12. doi:10.1038/s41577-018-0084-5.
  • Tricarico PM, Mentino D, De Marco A, Del Vecchio C, Garra S, Cazzato G, Foti C, Crovella S, Calamita G. Aquaporins are one of the critical factors in the disruption of the skin barrier in inflammatory skin diseases. Int J Mol Sci. 2022;23(7):4020. doi:10.3390/ijms23074020.
  • Chambers ES, Vukmanovic‐Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160(2):116–125. doi:10.1111/imm.13152.
  • Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–691. doi:10.1038/nri2622.
  • Matsui T, Amagai M. Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol. 2015;27(6):269–280. doi:10.1093/intimm/dxv013.
  • Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Sci. 2022;376(6596):940–945. doi:10.1126/science.abo0693.
  • Ro BI, Dawson TL. The role of sebaceous gland activity and scalp microfloral metabolism in the etiology of seborrheic dermatitis and dandruff. J Investig Dermatol Symp Proc. 2005;10(3):194–197. doi:10.1111/j.1087-0024.2005.10104.x.
  • Sheu HM, Chao S-C, Wong T-W, Lee Y-Y, Tsai J-C. Human skin surface lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum. Br J Dermatol. 1999;140(3):385–391. doi:10.1046/j.1365-2133.1999.02697.x.
  • Palma L, Palma L, Tavares Marques L, Bujan Varela J. Dietary water affects human skin hydration and biomechanics. Clin Cosmet Investig Dermatol. 2015;8:413–421. doi:10.2147/CCID.S86822.
  • Hoober JK, Eggink LL. The discovery and function of filaggrin. Int J Mol Sci. 2022;23(3):1455. doi:10.3390/ijms23031455.
  • Wang G, Sweren E, Andrews W, Li Y, Chen J, Xue Y, Wier E, Alphonse MP, Luo L, Miao Y. et al. Commensal microbiome promotes hair follicle regeneration by inducing keratinocyte HIF-1α signaling and glutamine metabolism. Sci Adv. 2023;9(1):eabo7555. doi:10.1126/sciadv.abo7555.
  • Terui H, Yamasaki K, Wada-Irimada M, Onodera-Amagai M, Hatchome N, Mizuashi M, Yamashita R, Kawabe T, Ishii N, Abe T. et al. Staphylococcus aureus skin colonization promotes SLE-like autoimmune inflammation via neutrophil activation and the IL-23/IL-17 axis. Sci Immunol. 2022;7(76):eabm9811. doi:10.1126/sciimmunol.abm9811.
  • Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, Wei M, Lovins V, Bugayev J. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe. 2021;29(8):1235–1248.e8. doi:10.1016/j.chom.2021.05.011.
  • Kengmo Tchoupa A, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome–skin interaction. Trends Microbiol. 2023;31(7):723–734. doi:10.1016/j.tim.2023.01.009.
  • Qiu Z, Zhu Z, Liu X, Chen B, Yin H, Gu C, Fang X, Zhu R, Yu T, Mi W. et al. A dysregulated sebum–microbial metabolite–IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med. 2022;219(10). doi:10.1084/jem.20212397.
  • Tiwari N, Osorio‐Blanco ER, Sonzogni A, Esporrín‐Ubieto D, Wang H, Calderón M. Nanocarriers for skin applications: where do we stand? Angew Chem Int Ed Engl. 2022;61(3):e202107960. doi:10.1002/anie.202107960.
  • Wölfle U, Martin S, Emde M, Schempp C. Dermatology in the Darwin anniversary. Part 2: Evolution of the skin-associated immune system. J Deutsche Derma Gesell. 2009;7(10):862–869. doi:10.1111/j.1610-0387.2009.07202.x.
  • Do LHD, Azizi N, Maibach H. Sensitive skin syndrome: an update. Am J Clin Dermatol. 2020;21(3):401–409. doi:10.1007/s40257-019-00499-7.
  • Berardesca E, Farage M, Maibach H. Sensitive skin: an overview. Int J Cosmet Sci. 2013;35(1):2–8. doi:10.1111/j.1468-2494.2012.00754.x.
  • Sandilands A, Sutherland C, Irvine AD, McLean WHI. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci. 2009;122(9):1285–1294. doi:10.1242/jcs.033969.
  • Leyvraz C, Charles R-P, Rubera I, Guitard M, Rotman S, Breiden B, Sandhoff K, Hummler E. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol. 2005;170(3):487–496. doi:10.1083/jcb.200501038.
  • Matsui T, Miyamoto K, Kubo A, Kawasaki H, Ebihara T, Hata K, Tanahashi S, Ichinose S, Imoto I, Inazawa J. et al. SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med. 2011;3(6):320–333. doi:10.1002/emmm.201100140.
  • Steinert PM, Cantieri JS, Teller DC, Lonsdale-Eccles JD, Dale BA. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci USA. 1981;78(7):4097–4101. doi:10.1073/pnas.78.7.4097.
  • Dale BA, Holbrook KA, Steinert PM. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978;276(5689):729–731. doi:10.1038/276729a0.
  • Dale BA, Resing KA, Lonsdale‐Eccles JD. Filaggrin: a keratin filament associated protein a. Ann NY Acad Sci. 1985;455(1):330–342. doi:10.1111/j.1749-6632.1985.tb50420.x.
  • Archer NK, Jo J-H, Lee SK, Kim D, Smith B, Ortines RV, Wang Y, Marchitto MC, Ravipati A, Cai SS. et al. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J Allergy Clin Immunol. 2019;143(4):1426–1443.e6. doi:10.1016/j.jaci.2018.08.042.
  • Briot J, Simon M, Méchin M-C. Deimination, intermediate filaments and associated proteins. Int J Mol Sci. 2020;21(22):8746. doi:10.3390/ijms21228746.
  • Ishida-Yamamoto A, Senshu T, Eady RAJ, Takahashi H, Shimizu H, Akiyama M, Iizuka H. Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. J Invest Dermatol. 2002;118(2):282–287. doi:10.1046/j.0022-202x.2001.01671.x.
  • Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H, Hibino T, Takeda A. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem. 2009;284(19):12829–12836. doi:10.1074/jbc.M807908200.
  • Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004;17(Suppl 1):43–48. doi:10.1111/j.1396-0296.2004.04S1005.x.
  • Quiroz FG, Fiore VF, Levorse J, Polak L, Wong E, Pasolli HA, Fuchs E. Liquid-liquid phase separation drives skin barrier formation. Sci. 2020;367(6483). doi:10.1126/science.aax9554.
  • Sumitomo A, Siriwach R, Thumkeo D, Ito K, Nakagawa R, Tanaka N, Tanabe K, Watanabe A, Kishibe M, Ishida-Yamamoto A. et al. LPA induces keratinocyte differentiation and promotes skin barrier function through the LPAR1/LPAR5-RHO-ROCK-SRF axis. J Invest Dermatol. 2019;139(5):1010–1022. doi:10.1016/j.jid.2018.10.034.
  • Presland RB, Boggess D, Patrick Lewis S, Hull C, Fleckman P, Sundberg JP. Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J Invest Dermatol. 2000;115(6):1072–1081. doi:10.1046/j.1523-1747.2000.00178.x.
  • Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S. et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38(3):337–342. doi:10.1038/ng1743.
  • Venkataraman D, Soto-Ramírez N, Kurukulaaratchy RJ, Holloway JW, Karmaus W, Ewart SL, Arshad SH, Erlewyn-Lajeunesse M. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876–882.e4. doi:10.1016/j.jaci.2014.07.033.
  • Basu K, Palmer CNA, Lipworth BJ, Irwin McLean WH, Terron‐Kwiatkowski A, Zhao Y, Liao H, Smith FJD, Mitra A, Mukhopadhyay S. et al. Filaggrin null mutations are associated with increased asthma exacerbations in children and young adults. Allergy. 2008;63(9):1211–1217. doi:10.1111/j.1398-9995.2008.01660.x.
  • Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, Yamada T, Amagai M. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46.e6. doi:10.1016/j.jaci.2012.01.068.
  • Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, Stremnitzer C, Buchberger M, Mlitz V, Ballaun C. et al. Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol. 2010;130(9):2286–2294. doi:10.1038/jid.2010.115.
  • van den Bogaard EH, Podolsky MA, Smits JP, Cui X, John C, Gowda K, Desai D, Amin SG, Schalkwijk J, Perdew GH. et al. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation. J Invest Dermatol. 2015;135(5):1320–1328. doi:10.1038/jid.2015.6.
  • Pendaries V, Malaisse J, Pellerin L, Le Lamer M, Nachat R, Kezic S, Schmitt A-M, Paul C, Poumay Y, Serre G. et al. Knockdown of filaggrin in a three-dimensional reconstructed human epidermis impairs keratinocyte differentiation. J Invest Dermatol. 2014;134(12):2938–2946. doi:10.1038/jid.2014.259.
  • Wichmann K, Uter W, Weiss J, Breuer K, Heratizadeh A, Mai U, Werfel T. Isolation of α-toxin-producing Staphylococcus aureus from the skin of highly sensitized adult patients with severe atopic dermatitis. Br J Dermatol. 2009;161(2):300–305. doi:10.1111/j.1365-2133.2009.09229.x.
  • Kim J, Kim BE, Ahn K, Leung DYM. Interactions between atopic dermatitis and staphylococcus aureus infection: clinical implications. Allergy Asthma Immunol Res. 2019;11(5):593–603. doi:10.4168/aair.2019.11.5.593.
  • Brauweiler AM, Bin L, Kim BE, Oyoshi MK, Geha RS, Goleva E, Leung DYM. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin–induced keratinocyte death. J Allergy Clin Immunol. 2013;131(2):421–7.e1–2. doi:10.1016/j.jaci.2012.10.030.
  • DiTommaso T, Cottle DL, Pearson HB, Schlüter H, Kaur P, Humbert PO, Smyth IM. Keratin 76 is required for tight junction function and maintenance of the skin barrier. PLOS Genet. 2014;10(10):e1004706. doi:10.1371/journal.pgen.1004706.
  • Karsch S, Büchau F, Magin TM, Janshoff A. An intact keratin network is crucial for mechanical integrity and barrier function in keratinocyte cell sheets. Cell Mol Life Sci. 2020;77(21):4397–4411. doi:10.1007/s00018-019-03424-7.
  • Roth W, Kumar V, Beer H-D, Richter M, Wohlenberg C, Reuter U, Thiering S, Staratschek-Jox A, Hofmann A, Kreusch F. et al. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin via interleukin-18. J Cell Sci. 2012;125:5269–5279. doi:10.1242/jcs.116574.
  • Lessard JC, Piña-Paz S, Rotty JD, Hickerson RP, Kaspar RL, Balmain A, Coulombe PA. Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci USA. 2013;110(48):19537–19542. doi:10.1073/pnas.1309576110.
  • Pang B, Zhu Z, Xiao C, Luo Y, Fang H, Bai Y, Sun Z, Ma J, Dang E, Wang G. et al. Keratin 17 is required for lipid metabolism in keratinocytes and benefits epidermal permeability barrier homeostasis, frontiers in cell and developmental biology. Front Cell Dev Biol. 2021;9:779257. doi:10.3389/fcell.2021.779257.
  • Kolter T, Sandhoff K. Sphingolipids—their metabolic pathways and the pathobiochemistry of neurodegenerative diseases. Angew Chem Int Ed. 1999;38(11):1532–1568. doi:10.1002/(SICI)1521-3773(19990601)38:11<1532:AID-ANIE1532>3.0.CO;2-U.
  • Vielhaber G, Pfeiffer S, Brade L, Lindner B, Goldmann T, Vollmer E, Hintze U, Wittern K-P, Wepf R. Localization of ceramide and glucosylceramide in human epidermis by immunogold electron microscopy. J Invest Dermatol. 2001;117(5):1126–1136. doi:10.1046/j.0022-202x.2001.01527.x.
  • Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR. Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem. 2011;286(27):24046–24056. doi:10.1074/jbc.M111.251496.
  • Zheng Y, Hunt RL, Villaruz AE, Fisher EL, Liu R, Liu Q, Cheung GYC, Li M, Otto M. Commensal staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. 2022;30(3):301–313.e9. doi:10.1016/j.chom.2022.01.004.
  • Shin K, Lee KB, Hwang J-H, Lee B, Ryu H, Noh M, Lee JB, Nam YS, Lim K-M, Kim JW. et al. Multilamellar ceramide core-structured microvehicles with substantial skin barrier function recovery. J Mater Chem B. 2023;11(10):2135–2144. doi:10.1039/D2TB02734H.
  • Amen N, Mathow D, Rabionet M, Sandhoff R, Langbein L, Gretz N, Jäckel C, Gröne H-J, Jennemann R. Differentiation of epidermal keratinocytes is dependent on glucosylceramide: ceramide processing. Hum Mol Genet. 2013;22(20):4164–4179. doi:10.1093/hmg/ddt264.
  • Ludovici M, Kozul N, Materazzi S, Risoluti R, Picardo M, Camera E. Influence of the sebaceous gland density on the stratum corneum lipidome. Sci Rep. 2018;8(1):11500. doi:10.1038/s41598-018-29742-7.
  • Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993;1182(2):147–151. doi:10.1016/0925-4439(93)90135-N.
  • Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: an extraordinary interface with an exceptional lipid organization. Prog Lipid Res. 2023;92:101252. doi:10.1016/j.plipres.2023.101252.
  • Gruber R, Elias PM, Crumrine D, Lin T-K, Brandner JM, Hachem J-P, Presland RB, Fleckman P, Janecke AR, Sandilands A. et al. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol. 2011;178(5):2252–2263. doi:10.1016/j.ajpath.2011.01.053.
  • Ruzicka T, Gl?ck S. Cutaneous histamine levels and histamine releasability from the skin in atopic dermatitis and hyper-IgE-syndrome. Arch Dermatol Res. 1983;275(1):41–44. doi:10.1007/BF00516553.
  • Gschwandtner M, Mildner M, Mlitz V, Gruber F, Eckhart L, Werfel T, Gutzmer R, Elias PM, Tschachler E. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. 2013;68(1):37–47. doi:10.1111/all.12051.
  • La Grutta S, Richiusa P, Pizzolanti G, Mattina A, Pajno GB, Citarrella R, Passalacqua G, Giordano C. CD4 + IL-13 + cells in peripheral blood well correlates with the severity of atopic dermatitis in children. Allergy. 2005;60:391–395. doi:10.1111/j.1398-9995.2005.00733.x.
  • Omori-Miyake M, Yamashita M, Tsunemi Y, Kawashima M, Yagi J. In vitro assessment of IL-4- or IL-13-mediated changes in the structural components of keratinocytes in mice and humans. J Invest Dermatol. 2014;134(5):1342–1350. doi:10.1038/jid.2013.503.
  • Eckhart L, Tschachler E. Control of cell death-associated danger signals during cornification prevents autoinflammation of the skin. Exp Dermatol. 2018;27(8):884–891. doi:10.1111/exd.13700.
  • Sakurai K, Sugiura H, Matsumoto M, Uehara M. Occurrence of patchy parakeratosis in normal-appearing skin in patients with active atopic dermatitis and in patients with healed atopic dermatitis: a cause of impaired barrier function of the atopic skin. J Dermatol Sci. 2002;30(1):37–42. doi:10.1016/S0923-1811(02)00047-6.
  • Usui ML, Underwood RA, Fleckman P, Olerud JE. Parakeratotic corneocytes play a unique role in human skin wound healing. J Invest Dermatol. 2013;133(3):856–858. doi:10.1038/jid.2012.352.
  • Naeem AS, Zhu Y, Di WL, Marmiroli S, O’Shaughnessy RFL. AKT1-mediated Lamin A/C degradation is required for nuclear degradation and normal epidermal terminal differentiation. Cell Death Differ. 2015;22(12):2123–2132. doi:10.1038/cdd.2015.62.
  • Proksch E, Brandner JM, Jensen J-M. The skin: an indispensable barrier. Exp Dermatol. 2008;17(12):1063–1072. doi:10.1111/j.1600-0625.2008.00786.x.
  • Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T. et al. Negative regulation of BMP/Smad signaling by tob in osteoblasts. Cell. 2000;103(7):1085–1097. doi:10.1016/S0092-8674(00)00211-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.