1,388
Views
2
CrossRef citations to date
0
Altmetric
Commentary

Flexibility of the “rigid” classics or rugged bottom of the folding funnels of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1

ORCID Icon
Article: e1355205 | Received 07 Jul 2017, Accepted 08 Jul 2017, Published online: 16 Oct 2017

References

  • Haldane J.B.S, Enzymes, Longmans, Green and Co., Great Britain, 1930
  • Fersht AR. Enzyme structure and mechanism, 2nd. ed., Freeman WH and Co., New York, 1985
  • Creighton TE, Proteins: Structures and molecular properties, 2nd. ed, Freeman WH and Company, New York, 1993
  • Fischer E. Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges 1894; 27:2985-93; https://doi.org/10.1002/cber.18940270364
  • Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 1965; 206:757-61; PMID:5891407; https://doi.org/10.1038/206757a0
  • Winter G, Fersht AR, Wilkinson AJ, Zoller M, Smith M. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 1982; 299:756-8; PMID:6811955; https://doi.org/10.1038/299756a0
  • Dalbadie-McFarland G, Cohen LW, Riggs AD, Morin C, Itakura K, Richards JH. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A 1982; 79:6409-13; PMID:6983070; https://doi.org/10.1073/pnas.79.21.6409
  • Sigal IS, Harwood BG, Arentzen R. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. Proc Natl Acad Sci U S A 1982; 79:7157-60; PMID:6818541; https://doi.org/10.1073/pnas.79.23.7157
  • Ward WH, Timms D, Fersht AR. Protein engineering and the study of structure–function relationships in receptors, Trends Pharmacol Sci 1990; 11:280-4; PMID:2202140; https://doi.org/10.1016/0165-6147(90)90009-W
  • Stevens RC, Chook YM, Cho CY, Lipscomb WN, Kantrowitz ER. Escherichia coli aspartate carbamoyltransferase: the probing of crystal structure analysis via site-specific mutagenesis. Protein Eng 1991; 4:391-408; PMID:1881865; https://doi.org/10.1093/protein/4.4.391
  • Fersht A, Winter G. Protein engineering. Trends Biochem Sci 1992; 17:292-5; PMID:1412703; https://doi.org/10.1016/0968-0004(92)90438-F
  • Heinemann U, Ay J, Gaiser O, Muller JJ, Ponnuswamy MN. Enzymology and folding of natural and engineered bacterial beta-glucanases studied by X-ray crystallography. Biol Chem 1996; 377:447-54; PMID:8922278
  • Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ. Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 2001; 10:1353-62; PMID:11420437; https://doi.org/10.1110/ps.40101
  • Tompa P. The functional benefits of protein disorder. J Mol Structure-Theochem 2003; 666:361-71; https://doi.org/10.1016/j.theochem.2003.08.047
  • Uversky VN, Gillespie JR, Fink AL, Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; https://doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
  • Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; https://doi.org/10.1006/jmbi.1999.3110
  • Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN. Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 2010; 4 Suppl 1:S1; PMID:20522251; https://doi.org/10.1186/1752-0509-4-S1-S1
  • van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Classification of intrinsically disordered regions and proteins, Chem Rev 2014; 114:6589-631; PMID:24773235; https://doi.org/10.1021/cr400525m
  • Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder, Chem Rev 2014; 114:6561-88; PMID:24739139; https://doi.org/10.1021/cr400514h
  • Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998:473-84; PMID:9697205
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-33; PMID:12368089; https://doi.org/10.1016/S0968-0004(02)02169-2
  • Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK, Natively disordered proteins, in: Buchner J, Kiefhaber T (Eds.) Handbook of Protein Folding, Wiley-VCH, Verlag GmbH & Co., Weinheim, Germany, 2005, pp. 271-353
  • Uversky VN. Unusual biophysics of intrinsically disordered proteins, Biochim Biophys Acta 2013; 1834:932-51; PMID:23269364; https://doi.org/10.1016/j.bbapap.2012.12.008
  • Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep 2013; 5:1; PMID:23361308; https://doi.org/10.3410/B5-1
  • Koshland DE. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 1958; 44:98-104; PMID:16590179; https://doi.org/10.1073/pnas.44.2.98
  • Villa J, Strajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A. How important are entropic contributions to enzyme catalysis?, Proc Natl Acad Sci U S A 2000; 97:11899-904; PMID:11050223; https://doi.org/10.1073/pnas.97.22.11899
  • Eisenmesser EZ, Bosco DA, Akke M, Kern D. Enzyme dynamics during catalysis, Science 2002; 295:1520-3; PMID:11859194; https://doi.org/10.1126/science.1066176
  • Sutcliffe MJ, Scrutton NS. A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 2002; 269:3096-102; PMID:12084049; https://doi.org/10.1046/j.1432-1033.2002.03020.x
  • Rajagopalan PT, Benkovic SJ. Preorganization and protein dynamics in enzyme catalysis, Chem Rec 2002; 2:24-36; PMID:11933259; https://doi.org/10.1002/tcr.10009
  • Agarwal PK, Billeter SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S. Network of coupled promoting motions in enzyme catalysis, Proc Natl Acad Sci U S A 2002; 99:2794-9; PMID:11867722; https://doi.org/10.1073/pnas.052005999
  • Agarwal PK, Geist A, Gorin A. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Biochemistry 2004; 43:10605-18; PMID:15311922; https://doi.org/10.1021/bi0495228
  • Tousignant A, Pelletier JN. Protein motions promote catalysis. Chem Biol 2004; 11:1037-42; PMID:15324804; https://doi.org/10.1016/j.chembiol.2004.06.007
  • Agarwal PK. Role of protein dynamics in reaction rate enhancement by enzymes, J Am Chem Soc 2005; 127:15248-56; PMID:16248667; https://doi.org/10.1021/ja055251s
  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D. Intrinsic dynamics of an enzyme underlies catalysis. Nature 2005; 438:117-21; PMID:16267559; https://doi.org/10.1038/nature04105
  • Yang LW, Bahar I. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 2005; 13:893-904; PMID:15939021; https://doi.org/10.1016/j.str.2005.03.015
  • Olsson MH, Parson WW, Warshel A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Rev 2006; 106:1737-56; PMID:16683752; https://doi.org/10.1021/cr040427e
  • Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD. A unified model of protein dynamics. Proc Natl Acad Sci U S A 2009; 106:5129-34; PMID:19251640; https://doi.org/10.1073/pnas.0900336106
  • Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC. Dynamics of ligand binding to myoglobin, Biochemistry 1975; 14:5355-73; PMID:1191643; https://doi.org/10.1021/bi00695a021
  • Frauenfelder H, Petsko GA, Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 1979; 280:558-63; PMID:460437; https://doi.org/10.1038/280558a0
  • Artymiuk PJ, Blake CC, Grace DE, Oatley SJ, Phillips DC, Sternberg MJ. Crystallographic studies of the dynamic properties of lysozyme, Nature 1979; 280:563-8; PMID:460438; https://doi.org/10.1038/280563a0
  • Frauenfelder H, Petsko GA. Structural dynamics of liganded myoglobin, Biophys J 1980; 32:465-83; PMID:7248456; https://doi.org/10.1016/S0006-3495(80)84984-8
  • Beece D, Eisenstein L, Frauenfelder H, Good D, Marden MC, Reinisch L, Reynolds AH, Sorensen LB, Yue KT. Solvent viscosity and protein dynamics. Biochemistry 1980; 19:5147-57; PMID:7448161; https://doi.org/10.1021/bi00564a001
  • Parak F, Frolov EN, Mossbauer RL, Goldanskii VI. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol 1981; 145:825-33; PMID:7265223; https://doi.org/10.1016/0022-2836(81)90317-X
  • Hartmann H, Parak F, Steigemann W, Petsko GA, Ponzi DR, Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A 1982; 79:4967-71; PMID:6956905; https://doi.org/10.1073/pnas.79.16.4967
  • Burger VM, Gurry T, Stultz CM. Intrinsically disordered proteins: Where computation meets experiment. Polymers 2014; 6:2684-719; https://doi.org/10.3390/polym6102684
  • Leopold PE, Montal M, Onuchic JN. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A 1992; 89:8721-5; PMID:1528885; https://doi.org/10.1073/pnas.89.18.8721
  • Onuchic JN, Wolynes PG. Theory of protein folding. Curr Opin Struct Biol 2004; 14:70-5; PMID:15102452; https://doi.org/10.1016/j.sbi.2004.01.009
  • Socci ND, Onuchic JN, Wolynes PG, Protein folding mechanisms and the multidimensional folding funnel, Proteins 1998; 32:136-58; PMID:9714155; https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2%3c136::AID-PROT2%3e3.0.CO;2-J
  • Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 1997; 48:545-600; PMID:9348663; https://doi.org/10.1146/annurev.physchem.48.1.545
  • Onuchic JN, Socci ND, Luthey-Schulten Z, Wolynes PG. Protein folding funnels: the nature of the transition state ensemble. Fold Des 1996; 1:441-50; PMID:9080190; https://doi.org/10.1016/S1359-0278(96)00060-0
  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958; 181:662-6; PMID:13517261; https://doi.org/10.1038/181662a0
  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC. Structure of myoglobin: A three-dimensional fourier synthesis at 2 A. resolution. Nature 1960; 185:422-7; PMID:18990802; https://doi.org/10.1038/185422a0
  • Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 1965; 206:757-61; PMID:5891407; https://doi.org/10.1038/206757a0
  • Johnson LN, Phillips DC, Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature 1965; 206:761-3; PMID:5840126; https://doi.org/10.1038/206761a0
  • Kartha G, Bello J, Harker D. Tertiary structure of ribonuclease, Nature 1967; 213:862-5; PMID:6043657; https://doi.org/10.1038/213862a0
  • Matthews BW, Sigler PB, Henderson R, Blow DM. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 1967; 214:652-6; PMID:6049071; https://doi.org/10.1038/214652a0
  • Dickerson RE, Kopka ML, Borders CL, Jr, Varnum J, Weinzier JE. A centrosymmetric projection at 4A of horse heart oxidized cytochrome c. J Mol Biol 1967; 29:77-95; PMID:6055338; https://doi.org/10.1016/0022-2836(67)90182-9
  • Lipscomb WN, Hartsuck JA, Reeke GN, Quiocho FA, Bethge PH, Ludwif ML, Steitz TA, Muirhead H, Coppola JC. The structure of carboxypeptidase A, VII. The 2.0-Å resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symposia Biol 1969; 21:24-90
  • Hrabe T, Li Z, Sedova M, Rotkiewicz P, Jaroszewski L, Godzik A. PDBFlex: exploring flexibility in protein structures. Nucleic Acids Res 2016; 44:D423-428; PMID:26615193
  • Steinrauf LK. Structures of monoclinic lysozyme iodide at 1.6 A and of triclinic lysozyme nitrate at 1.1 A. Acta Crystallogr D Biol Crystallogr 1998; 54:767-80; PMID:9757091
  • Maroun RC. Molecular modeling of an active loop structure in lysozyme. Sequence effects or crystal packing? J Biomol Struct Dyn 1999; 16:873-89; PMID:10217456
  • Liu Y, Gotte G, Libonati M, Eisenberg D. A domain-swapped RNase A dimer with implications for amyloid formation. Nat Struct Biol 2001; 8:211-4; PMID:11224563
  • Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, et al. Cytochrome c polymerization by successive domain swapping at the C-terminal helix, Proc Natl Acad Sci U S A 2010; 107:12854-9; PMID:20615990
  • Shatsky M, Nussinov R, Wolfson HJ. A method for simultaneous alignment of multiple protein structures Proteins 2004; 56:143-56; PMID:15162494
  • Abe S, Ueno T, Reddy PA, Okazaki S, Hikage T, Suzuki A, Yamane T, Nakajima H, Watanabe Y. Design and structure analysis of artificial metalloproteins: selective coordination of His64 to copper complexes with square-planar structure in the apo-myoglobin scaffold. Inorg Chem 2007; 46:5137-9; PMID:17523632
  • Merlino A, Russo Krauss I, Perillo M, Mattia CA, Ercole C, Picone D, Vergara A, Sica F. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants. Biopolymers 2009; 91:1029-37; PMID:19280639
  • Singh N, Jabeen T, Sharma S, Roy I, Gupta MN, Bilgrami S, Somvanshi RK, Dey S, Perbandt M, Betzel C, et al. Detection of native peptides as potent inhibitors of enzymes. Crystal structure of the complex formed between treated bovine alpha-chymotrypsin and an autocatalytically produced fragment, IIe-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp, at 2.2 Å resolution. FEBS J 2005; 272:562-72; PMID:15654893
  • Pjura PE, Lenhoff AM, Leonard SA, Gittis AG. Protein crystallization by design: chymotrypsinogen without precipitants. J Mol Biol 2000; 300:235-9; PMID:10873462; https://doi.org/10.1006/jmbi.2000.3851
  • Kang SA, Marjavaara PJ, Crane BR. Electron transfer between cytochrome c and cytochome c peroxidase in single crystals. J Am Chem Soc 2004; 126:10836-7; PMID:15339156; https://doi.org/10.1021/ja049230u
  • Arolas JL, Popowicz GM, Bronsoms S, Aviles FX, Huber R, Holak TA, Ventura S. Study of a major intermediate in the oxidative folding of leech carboxypeptidase inhibitor: contribution of the fourth disulfide bond. J Mol Biol 2005; 352:961-75; PMID:16126224; https://doi.org/10.1016/j.jmb.2005.07.065
  • Cho JH, Kim DH, Chung SJ, Ha NC, Oh BH, Yong Choi K. Insight into the stereochemistry in the inhibition of carboxypeptidase A with N-(hydroxyaminocarbonyl)phenylalanine: binding modes of an enantiomeric pair of the inhibitor to carboxypeptidase. A Bioorg Med Chem 2002; 10:2015-22; PMID:11937361; https://doi.org/10.1016/S0968-0896(01)00429-1
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14:27-38; https://doi.org/10.1016/0263-7855(96)00018-5
  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK, Sequence complexity of disordered protein, Proteins 2001; 42:38-48; PMID:11093259; https://doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3
  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and Internal Regions, Genome informatics. Workshop Genome Informatics 1999; 10:30-40; PMID:11072340
  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010; 1804:996-1010; PMID:20100603; https://doi.org/10.1016/j.bbapap.2010.01.011
  • Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; https://doi.org/10.1142/S0219720005000886
  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61 Suppl 7:176-82; PMID:16187360; https://doi.org/10.1002/prot.20735
  • Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7:208; PMID:16618368; https://doi.org/10.1186/1471-2105-7-208
  • Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; https://doi.org/10.1093/bioinforma-tics/bti541

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.