1,552
Views
20
CrossRef citations to date
0
Altmetric
Review

Application of nanostructured drug delivery systems in immunotherapy of cancer: a review

, , , , , & show all
Pages 18-23 | Received 02 Mar 2016, Accepted 10 Apr 2016, Published online: 19 May 2016

References

  • Abbasi E, Akbarzadeh A, Kouhi M, Milani M. 2016a. Graphene: synthesis, bio-applications, and properties. Artif Cells Nanomed Biotechnol. 44:150–156.
  • Abbasi E, Fekri Aval S, Akbarzadeh A, Milani M, Tayefi Nasrabadi H, Hanifepour Y, Nejati-Koshki K, Pashaei-Asl R. 2014. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 9:247.
  • Abbasi E, Milani M, Fekri Aval S, Kouhi M, Akbarzadeh A, Tayefi Nasrabadi H, et al. 2016b. Silver nanoparticles: synthesis, properties, bio-applications and limitations. Crit Rev Microbiol. 42:173–180.
  • Ahmadi A, Shirazi H, Pourbagher N, Akbarzadeh A, Omidfar K. 2014. An electrochemical immunosensor for digoxin using core-shell gold coated magnetic nanoparticles as labels. Mol Biol Rep. 41:1659–1668.
  • Alimirzalu S, Akbarzadeh A, Abbasian M, Alimohammadi S, Davaran S, Hanifehpour Y, Samiei M, Woo Joo S. 2014. Synthesis and study of physicochemical characteristics of Fe3O4 magnetic nanocomposites based on poly(nisopropylacrylamide)for anti-cancer drugs delivery. Asian Pac J Cancer Prev. 15:049–054.
  • Alizadeh E, Akbarzadeh A, Zarghami N, Baghaban Eslaminejad M, Hashemzadeh S, Nejati-Koshki K. 2014. Up-regulation of liver enriched transcription factors (HNF4a and HNF6) and liver specific microRNA (miR-122) by inhibition of Let-7b in mesenchymal stem cells. Chem Biol Drug Des. 85:600–608.
  • Alizadeh E, Eslaminejad MB, Akbarzadeh A, Sadeghi Z, Abasi M, Herizchi R, Zarghami N. 2016. Upregulation of MiR-122 via trichostatin A treatments in hepatocyte-like cells derived from mesenchymal stem cells. Chem Biol Drug Des. 87:296–305.
  • Almeida JPM, Figueroa ER, Drezek RA. 2014. Gold nanoparticle mediated cancer immunotherapy. Nanomed Nanotechnol Biol Med. 10:503–514.
  • Bachmann MF, Jennings GT. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 10:787–796.
  • Baxevanis CN, Perez SA, Papamichail M. 2009. Cancer immunotherapy. Crit Rev Clin Lab Sci. 46:167–189.
  • Begley J, Ribas A. 2008. Targeted therapies to improve tumor immunotherapy. Clin Cancer Res. 14:4385–4391.
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. 2014. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 66:2–25.
  • Bhutia SK, Mallick SK, Maiti TK. 2010. Tumour escape mechanisms and their therapeutic implications in combination tumour therapy. Cell Biol Int. 34:553–563.
  • Chatenoud L. 2006. Immune therapies of autoimmune diseases: are we approaching a real cure? Curr Opin Immunol. 18:710–717.
  • Cho N-H, Cheong T-C, Min JH, Wu JH, Lee SJ, Kim D, et al. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 6:675–682.
  • Chung J-H, Kim YK, Kim K-H, Kwon T-Y, Vaezmomeni SZ, Samiei M, et al. 2016. Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications. Artif Cells Nanomed Biotechnol. 44:277–284.
  • Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, et al. 2014. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem. 2:105.
  • Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, et al. 2010. Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm. 8:104–116.
  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. 2016a. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 44:410–422.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. 2016b. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 44:381–391.
  • Davoudi Z, Akbarzadeh A, Rahmatiyamchi M, Akbar Movassaghpour A, Alipour M, Nejati-Koshki K, et al. 2014. Molecular target therapy of AKT and NF-kB signaling pathways and multidrug resistance by specific cell penetrating inhibitor peptides in HL-60 cells. Asian Pac J Cancer Prev. 15:4353.
  • Dimberu PM, Leonhardt RM. 2011. Cancer immunotherapy takes a multi-faceted approach to kick the immune system into gear. Yale J Biol Med. 84:371.
  • Dunn GP, Old LJ, Schreiber RD. 2004. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 21:137–148.
  • Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Hanifehpour Y, Woo Joo S. 2014. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 9:1–13.
  • Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A, Hanifehpour Y. 2016. Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol. 44:111–121.
  • Ebrahimi E, Abbasi E, Akbarzadeh A, Ahmad Khandaghi A, Davaran S. 2016. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG1000 copolymer. Artif Cells Nanomed Biotechnol. 44:290–287.
  • Effat A, Zarghami N, Eslaminejad MB, Akbarzadeh A, Barzegar A, Abolghasem Mohammadi S. 2016. The effect of dimethyl sulfoxide (DMSO) on hepatic differentiation of mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 44:157–164.
  • Fang J, Nakamura H, Maeda H. 2011. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 63:136–151.
  • Fekri Aval S, Akbarzadeh A, Yamchi MR, Zarghami F, Nejati-Koshki K, Zarghami N. 2016. Gene silencing effect of SiRNA-magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line. Artif Cells Nanomed Biotechnol. 44:188–193.
  • Ghasemali S, Nejati-Koshki K, Akbarzadeh A, Tafsiri E, Zarghami N, Rahmati-Yamchi M, et al. 2013. Study of inhibitory effect of β-cyclodextrin-helenalin complex on HTERT gene expression in T47D breast cancer cell line by real timequantitative PCR (q-PCR). Asian Pac J Cancer Prev. 14:6949–6953.
  • Hanes J, Sills A, Zhao Z, Suh KW, Tyler B, DiMeco F, et al. 2001. Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Pharm Res. 18:899–906.
  • Hosseininasab S, Pashaei-Asl R, Ahmad Khandaghi A, Tayefi Nasrabadi H, Nejati-Koshki K, Akbarzadeh A, et al. 2014. Synthesis, characterization, and in vitro studies of PLGA-PEG nanoparticles for oral Insulin delivery. Chem Biol Drug Des. 84:307–315.
  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA. 2007. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond). 2:681–693.
  • Klippstein R, Pozo D. 2010. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomed Nanotechnol Biol Med. 6:523–529.
  • Kouhi M, Vahedi A, Akbarzadeh A, Hanifehpour Y, Woo Joo S. 2014. Investigation of quadratic electro-optic effects and electro absorption process in GaN/AlGaN spherical quantum dot. Nanoscale Res Lett. 9:131–136.
  • Lee I-H, An S, Yu MK, Kwon H-K, Im S-H, Jon S. 2011. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J Control Release. 155:435–441.
  • Liu S-Y, Wei W, Yue H, Ni D-Z, Yue Z-G, Wang S, et al. 2013. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials. 34:8291–8300.
  • Malyala P, O’Hagan DT, Singh M. 2009. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv Drug Deliv Rev. 61:218–225.
  • Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P, et al. 2011. Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials. 32:2938–2952.
  • Mellman I, Coukos G, Dranoff G. 2011. Cancer immunotherapy comes of age. Nature. 480:480–489.
  • Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A. 2016. Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artif Cells Nanomed Biotechnol. 44:376–380.
  • Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, et al. 2014. Exosomes as immunotheranostic nanoparticles. Clin Therap. 36:820–829.
  • Nikpoor AR, Tavakkol-Afshari J, Gholizadeh Z, Sadri K, Babaei MH, Chamani J, et al. 2015. Nanoliposome-mediated targeting of antibodies to tumors: IVIG antibodies as a model. Int J Pharm. 495:162–170.
  • Noh YW, Hong JH, Shim SM, Park HS, Bae HH, Ryu EK, et al. 2013. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angewandte Chem. 125:7838–7843.
  • Park Y-M, Lee SJ, Kim YS, Lee MH, Cha GS, Jung ID, et al. 2013. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw. 13:177–183.
  • Paulis LE, Mandal S, Kreutz M, Figdor CG. 2013. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol. 25:389–395.
  • Peng BG, Liu SQ, Kuang M, He Q, Totsuka S, Huang L, et al. 2002. Autologous fixed tumor vaccine: a formulation with cytokine-microparticles for protective immunity against recurrence of human hepatocellular carcinoma. Jpn J Cancer Res. 93:363–368.
  • Pourhassan-Moghaddam M, Zarghami N, Mohsenifar A, Rahmati-Yamchi M, Gholizadeh D, Akbarzadeh A, de la Guardia M, Nejati-Koshki K. 2014. Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. IET Dig Library. 4:5.
  • Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, et al. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 117:78–88.
  • Sheng W-Y, Huang L. 2011. Cancer immunotherapy and nanomedicine. Pharm Res. 28:200–214.
  • Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. 2013. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 168:179–199.
  • Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V, Badrzadeh F, Rahmati-Yamchi M. 2016. A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif Cells Nanomed Biotechnol. 44:423–430.
  • Tran T-H, Mattheolabakis G, Aldawsari H, Amiji M. 2015. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol. 160:46–58.
  • Weiner LM, Surana R, Wang S. 2010. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 10:317–327.
  • Yan W, Chen W, Huang L. 2008. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J Control Release. 130:22–28.
  • Yim H, Park W, Kim D, Fahmy TM, Na K. 2014. A self-assembled polymeric micellar immunomodulator for cancer treatment based on cationic amphiphilic polymers. Biomaterials. 35:9912–9919.
  • Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. 2014. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials. 35:8186–8196.
  • Yuba E, Harada A, Sakanishi Y, Watarai S, Kono K. 2013. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials. 34:3042–3052.
  • Yuba E, Tajima N, Yoshizaki Y, Harada A, Hayashi H, Kono K. 2014. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterials. 35:3091–3101.
  • Zupančič E, Silva J, Videira MA, Moreira JN, Florindo HF. 2014. Development of a novel nanoparticle-based therapeutic vaccine for breast cancer immunotherapy. Proc Vaccinol. 8:62–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.