3,872
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity

, , , , , & show all
Pages 1369-1378 | Received 10 Jul 2016, Accepted 23 Sep 2016, Published online: 18 Nov 2016

References

  • Abbott W. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol. 18:265–267.
  • Almoneafy AA, Xie G, Tian W, Xu L, Zhang G, Ibrahim M. 2012. Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr J Biotechnol. 11:7193–7201.
  • Banu AN, Balasubramanian C. 2015. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae). Parasitol Res. 114:4069–4079.
  • Banu AN, Balasubramanian C, Moorthi PV. 2014. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. 113:311–316.
  • Benelli G. 2015. Research in mosquito control: current challenges for a brighter future. Parasitol Res.114:2801–2805.
  • Benelli G. 2016. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 115:23–34.
  • Benelli G, Mehlhorn H. 2016. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 115:1747–1754.
  • Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Lett. 5:1787–1792.
  • Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42:3066–3074.
  • Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol. 6:780.
  • De-Jian S, Xu LD, Ji HD. 2013. The history of the elimination of lymphatic filariasis in China. Infect Dis Poverty. 2:30.
  • Deepak P, Sowmiya R, Ramkumar R, Balasubramani G, Aiswarya D, Perumal P. 2016. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848. Artif Cells Nanomed Biotechnol. 6:1–9.
  • Dhanasekaran D, Thangaraj R. 2013. Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pac J Trop Dis. 3:174–179.
  • Du J, Singh H, Yi TH. 2016. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artif Cells Nanomed Biotechnol. 5:1–7.
  • El-Shakh AS, Kakar KU, Wang X, Almoneafy AA, Ojaghian MR, Li B, Anjum SI, Xie G-L. 2015. Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial Bacillus strains. Toxicol Environ Chem. 97:766–785.
  • Finney DJ. 1971. Probit analysis. 3rd ed. London: Cambridge University Press, pp. 68–72.
  • Gole A, Dash C, Ramakrishnan V, Sainkar S, Mandale A, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 17:1674–1679.
  • Gopinath V, Velusamy P. 2013. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A Molec Biomolec Spectrosc. 106:170–174.
  • Guzman M, Dille J, Godet S. 2012. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol BiolMed. 8:37–45.
  • Hop DV, Phuong HT, Quang ND, Ton PH, Ha TH, Hung NV, et al. 2014. Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Sci. 19:103–111.
  • Janeiro P, Corduneanu O, Oliveira AM. 2005. Chrysin and (±)‐taxifolin electrochemical oxidation mechanisms. Electroanalysis. 17:1059–1064.
  • Kanchana A, Agarwal I, Sunkar S, Nellore J, Namasivayam K. 2011. Biogenic silver nanoparticles from Spinacia oleracea and Lactuca sativa and their potential antimicrobial activity. Digest J Nanomat Biostruct. 6:1741–1750.
  • Kim SW, Kim KS, Lamsal K, Kim Y-J, Kim SB, Jung M, et al. 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol. 19:760–764.
  • Kvitek L, Panáč A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C. 112:5825–5834.
  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Kumar NS. 2015. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res Int. 22:17753–17768.
  • Laspidou CS, Rittmann BE. 2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36:2711–2720.
  • Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW. 2008. Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol. 24:1139–1145.
  • Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, et al. 2013. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett. 105:128–131.
  • Lemessa F, Zeller W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control. 42:336–344.
  • Li H, Soares MA, Torres MS, Bergen M, White JF. 2015. Endophytic bacterium, Bacillus amyloliquefaciens, enhances ornamental hosta resistance to diseases and insect pests. J Plant Interact. 10:224–229.
  • Mageswari A, Subramanian P, Ravindran V, Yesodharan S, Bagavan A, Rahuman AA, Karthikeyan S, Gothandam KM. 2014. Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environ Sci Pollut Res Int. 22:5383–5394.
  • Mohan L, Sharma P, Srivastava C. 2006. Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of the filarial vector Culex quinquefasciatus (Say). Entomol Res. 36:220–225.
  • Monteiro L, Mariano LR, Souto-Maior AM. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz Arch Biol Technol. 48:23–29.
  • Mubarak Ali D, Gopinath V, Rameshbabu N, Thajuddin N. 2012. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett. 74:8–11.
  • Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL. 2015. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res. 114:1817–1827.
  • Nam HS, Oh BJ, Kim YC. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol J. 32:273–280.
  • Padman AJ, Henderson J, Hodgson S, Rahman PK. 2014. Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotechnol Lett. 36:2079–2084.
  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM, Subramaniam J. 2013. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pac J Trop Med. 6:102–109.
  • Pawar O, Deshpande N, Dagade S, Waghmode S, Nigam JP. 2016. Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima. J Exp Nanosci. 11:28–37.
  • Perumalsamy H, Chang KS, Park C, Ahn YJ. 2010. Larvicidal activity of Asarum heterotropoides root constituents against insecticide-susceptible and -resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem. 58:10001–10006.
  • Rawani A, Ghosh A, Chandra G. 2013. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica. 128:613–622.
  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, et al. 2015. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf. 121:31–38.
  • Sanghi R, Verma P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores Technol. 100:501–504.
  • Santhosh SB, Ragavendran C, Natarajan D. 2015. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. J Photochem Photobiol B Biol. 153:184–190.
  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas S. 2010. UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci. 10:3132–3136.
  • Shah AT, Din MI, Bashir S, Qadir MA, Rashid F. 2015. Green synthesis and characterization of silver nanoparticles using Ferocactus echidne extract as a reducing agent. Analyt Lett. 48:1180–1189.
  • Soni N, Prakash S. 2012. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. 110:175–184.
  • Soni N, Prakash S. 2014. Microbial synthesis of spherical nanosilver and nanogold for mosquito control. Ann Microbiol. 64:1099–1111.
  • Suganya G, Karthi S, Shivakumar MS. 2014. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res. 113:875–880.
  • Sundaravadivelan C, Padmanabhan MN. 2014. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res Int. 21:4624–4633.
  • Thompson D, Clarke B, Kobayashi D. 1996. Evaluation of bacterial antagonists for reduction of summer patch symptoms in Kentucky bluegrass. Plant Dis. 80:856–862.
  • Udayasoorian C, Kumar R, Jayabalakrishnan M. 2011. Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. Dig J Nanomater Biostruct. 6:279–283.
  • Velu K, Elumalai D, Hemalatha P, Janaki A, Babu M, Hemavathi M, Kaleena PK. 2015. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res Int. 22:17769–17779.
  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. 2015. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. 44:1127–1132.
  • WHO. 2004. Estimated incidence, prevalence and TB mortality. Geneva: WHO. Available from: http://www.who.int/mediacentre/factsheets/fs104/en
  • WHO. 2014. Lymphatic filariasis. Fact Sheet No 102. Available from: http://www.searo.who.int/thailand/factsheets/fs0012/en/
  • WHO. 2015. Lymphatic filariasis fact sheet. Available from: http://www.who.int/mediacentre/factsheets/fs102/en/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.