2,006
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Recent approaches to ameliorate selectivity and sensitivity of enzyme based cholesterol biosensors: a review

, , &
Pages 472-481 | Received 28 Apr 2017, Accepted 20 May 2017, Published online: 09 Jun 2017

References

  • Miller GJ. High density lipoproteins and atherosclerosis. Annu Rev Med. 1980;31:97–108.
  • Kratz M. Dietary cholesterol, atherosclerosis and coronary heart disease. Handb Exp Pharmacol. 2005;170:195–213.
  • Hwang IC, Suh SY, Seo AR, et al. Association between metabolic components and subclinical atherosclerosis in Korean adults. Korean J Fam Med. 2012;33:229–236.
  • Kayamori Y, Hatsuyama H, Tsujioka T, et al. Endpoint colorimetric method for assaying total cholesterol in serum with cholesterol dehydrogenase. Clin Chem. 1999;45:2158–2163.
  • Amundson MD, Zhou M. Fluorometric method for the enzymatic determination of cholesterol. J Biochem Biophys Methods. 1999;38:43–52.
  • Huang TC, Wefler V, Raftery A. A simplified spectrophotometric method for determination of total and esterified cholesterol with tomatine. Anal Chem. 1963;35:1757–1758.
  • Allian CC, Poon Lucy S, Richmond W. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20:470–475.
  • Leland CC, Duggan CA, Grooms TA, et al. One minute enzymic electrochemical assay for cholesterol in biological materials. Clin Chem. 1981;27:1978–1982.
  • Gahlaut A, Chhillar AK, Ashish, et al. Development of analytical method based on enzymatic PVC strip for measurement of serum total cholesterol. Int J Appl Biotechnol Biochem. 2012;2:185–195.
  • Bhatia D, Suman, Pundir CS. Preparation of reusable enzyme strip for determination of serum cholesterol. Indian J Biotechnol. 2005;4:471–475.
  • Vikas A, Pundir CS. Biosensors: future analytical tools. Sensors Transducers J. 2007;76:935–936.
  • Kroger S, Danielsson B. Calorimetric biosensors. In Handbook of biosensors and electronic noses. Medicine, food and the environment. Kress-Rogers E, editors. New York: CRC Press Oxford Science Publications; 1997; p. 279–298.
  • Lawrence CR, Geddes NJ. Surface plasmon resonance (SPR) for biosensing. In Handbook of biosensors and electronic noses. Medicine, food and the environment; Kress-Rogers E, editors. New York: CRC Press; 1997; p. 149–168.
  • Dzyadevych SV, Arkhypova VN, Soldatkin AP, et al. Amperometric enzyme biosensors: past, present and future. IRBM. 2008;29:171–180.
  • Sahney R, Puri BK, Srivastava RC. A conductometric cholesterol sensor based on the permeability effect on BLM and its application in clinical analysis. J Pharmacol Toxicol. 2006;1:566–572.
  • Srisawasdi P, Jearanaikoon P, Wetprasit N, et al. Application of streptomyces and brevibacterium cholesterol oxidase for total serum cholesterol assay by the enzymatic kinetic method. Clin Chim Acta. 2006;372:103–111.
  • Vrielink A. Cholesterol oxidase: structure and function: cholesterol binding and cholesterol transport proteins. Subcell Biochem. 2010;51:137–158.
  • Vahouny GV, Treadwell CR. Enzymatic synthesis and hydrolysis of cholesterol esters. Methods Biochem Anal. 1968;16:219–272.
  • Gorton L, Bremle G, Csoregi E, et al. Amperometric glucose sensors based on immobilized glucose-oxidizing enzymes and chemically modified electrodes. Anal Chim Acta. 1992;249:43–45.
  • Ghindilis AL, Atanasov P, Wilkins E. Enzyme-catalysed direct electron transfer: fundamental and analytical applications. Electroanalysis. 1997;9:661–674.
  • Hanefeld U, Gardossib L, Magnerc E. Understanding enzyme immobilisation. Chem Soc Rev. 2009;38:453–468.
  • Yusdy, Patel SR, Yap MGS, et al. Immobilization of L-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem Eng J. 2009;48:13–21.
  • Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30:489–511.
  • Spahn C, Minteer SD. Enzyme immobilization in biotechnology. ENG. 2008;2:195–200.
  • Singh BD. Biotechnology expanding horizons. India: Kalyani Publications; 2009.
  • Datta S, Christena LR, Rani Y, et al. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013;3:1–9.
  • Wang X, Uchiyama S. Polymers for biosensors construction. “State of the Art in Biosensors - General Aspects”, ISBN 978-953-51-1004-0, Published: March 13, 2013.
  • Singh S, Chaubey A, Malhotra BD. Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Anal Chim Acta. 2004;502:229–234.
  • Vidal JC, Garcia E, Castillo JR. Development of a platinized and ferrocene – mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system. Anal Sci. 2002;18:537–545.
  • Kumar R, Chaubey A, Grover SK, et al. Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion doped polypyrrole film. J Appl Polym Sci. 2001;82:3486–3491.
  • Nien PC, Chen PY, Ho KC. Fabricating an amperometric cholesterol biosensor by a covalent linkage between poly(3-thiopheneacetic acid) and cholesterol oxidase. Sensors. 2009;9:1794–1806.
  • Chauhan RPS, Basniwal PS, Parvez S, et al. Development of a cholesterol biosensor based on polyaniline-Ag nanocomposites. J Biosens Bioelectron. 2013;62:493–498.
  • Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol. 2004;35:126–139.
  • Umar A, Rahman MM, Vaseem M, et al. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun. 2009;11:118–121.
  • Cao S, Zhang L, Chai Y, et al. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst. Talanta. 2013;15:167–172.
  • Zhang H, Liub R, Zheng J. Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode. Analyst. 2012;137:5363–5367.
  • Hooda V, Gahlaut A, Kumar H, et al. Biosensor based on enzyme coupled PVC reaction cell for electrochemical measurement of serum total cholesterol. Sens Actuats B Chem. 2009;13:235–241.
  • Jochems P, Satyawali Y, Diels L, et al. Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem. 2011;13:1609–1623.
  • Jianping L, Peng T, Peng Y, et al. A Cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol–gel matrix at a prussian blue modified. Electroanalysis. 2003;15:1031–1033.
  • Singh S, Singhal R, Malhotra BD. Immobilization of cholesterol esterase and cholesterol oxidase onto sol–gel films for application to cholesterol biosensor. Anal Chim Acta. 2007;582:335–343.
  • Zhao Z, Lei W, Zhang X, et al. ZnO-based amperometric enzyme biosensors. Sensors (Basel). 2010;10:1216–1231.
  • Hooda V, Pundir CS. Cholesterol biosensor based on HRP incorporated carbon paste electrode wrapped with CA membrane enzyme laminate. Int J Biotechnol Biochem. 2011;7:617–635.
  • Hooda V, Pundir CS. Fabrication of Pt based amperometric cholesterol biosensor using cellulose acetate membrane. J Scient Indust Res. 2008;67:299–306.
  • Endo H, Masashi M, Mio T, et al. Enzyme sensor system for determination of total cholesterol in fish plasma. Fisheries Sci. 2003;691:1194–1199.
  • Jubete E, Loaiza OA, Ochoteco E, et al. Nanotechnology: a tool for improved performance on electrochemical screen-printed (bio)sensors. J Sensor. 2009;2009:1–13.
  • Matharu Z, Solanki PR, Gupta V, et al. BD, Mediator free cholesterol biosensor based on self-assembled monolayer platform. Analyst. 2012;137:747–753.
  • Manjunatha R, Shivappa Suresh G, Savio Melo J, et al. An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta. 2012;99:302–309.
  • Basu AK, Chattopadhyay P, Roychoudhuri U, et al. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochem. 2007;70:375–379.
  • Britto PJ, Santhanam KSV, Ajayan PM. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg. 1996;41:121–125.
  • Chen J, Miao Y, He N, et al. Nanotechnology and biosensors. Biotechnol Adv. 2004;22:505–518.
  • Wisitsoraat A, Sritongkham P, Karuwan C, et al. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron. 2010;26:1514–1520.
  • Norouzi P, Faridbod F, Nasli-Esfahani E, et al. Cholesterol biosensor based on MWCNTs-MnO2 nanoparticles using FFT continuous cyclic voltammetry. Int J Electrochem Sci. 2010;5:1008–1017.
  • Jeng-You Y, Ying L, Shen-Ming C, et al. Fabrication of a cholesterol biosensor based on cholesterol oxidase and multiwall carbon nanotube hybrid composites. Int J Electrochem Sci. 2011;6:2223–2234.
  • Luo X, Morrin A, Killard AJ, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanal. 2006;18:319–326.
  • Ahmadalinezhad A, Chen A. High-performance electrochemical biosensor for the detection of total cholesterol. Biosens Bioelectron. 2011;26:4508–4513.
  • Parviz N. Application of coulometric FFT cyclic voltammetry for determination of cholesterol based on cholesterol oxidase nano-biosensor. Anal Bioanal Electrochem. 2012;4:70– 82.
  • Qiao CS, Peng TZ. A novel cholesterol oxidase biosensor based on Pt-nanoparticle/carbon nanotube modified electrode. Chinese Chem Lett. 2005;16:1081–1084.
  • Saxena U, Chakraborty M, Goswami P. Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens Bioelectron. 2011;26:3037–3043.
  • Zhang M, Yuan R, Chai Y, et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens Bioelectron. 2012;32:288–292.
  • Chauhan R, Deepshikha, Basu T. Development of a reusable transducer matrix based on nano structured conducting polyaniline and its application to cholesterol biosensor. Sci Adv mater. 2012;4:2927–2935.
  • Baby TT, Ramaprabhu S. Non-enzymatic glucose and cholesterol biosensors based on silica coated nano iron oxide dispersed multiwalled carbon nanotubes, nanoscience, technology and societal implications (NSTSI), 2011.
  • Psychoyios VN, Nikoleli G-P, Tzamtzis N, et al. Potentiometric cholesterol biosensor based on ZnO nanowalls and stabilized polymerized lipid film. Electroanalysis. 2013;25:367– 372.
  • Dey RS, Retna C. Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J Phys Chem. 2010;114:21427–21433.
  • Umar A, Rahman MM, Al-Hajry A, et al. Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta. 2009;78:284–289.
  • Khan R, Kaushik A, Solanki PR, et al. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta. 2008;616:207–213.
  • Wang C, Tan X, Chen S, et al. Highly-sensitive cholesterol biosensor based on platinum-gold hybrid functionalized ZnO nanorods. Talanta. 2012;94:263–270.
  • Israr MQ, Sadaf JR, Asif MH, et al. Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire. Thin Solid Films. 2010;519:1106–1109.
  • Lia G, Liaoa JM, Hua GQ, et al. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosens Bioelectron. 2005;20:2140–2144.
  • Saini D, Chauhan R, Solanki PR, et al. Gold-nanoparticle decorated graphene-nanostructured polyaniline nanocomposite-based bienzymatic platformfor cholesterol sensing. Int Sch Res Notices. 2012;2012:12.
  • Peña N, Ruiz G, Reviejo AJ, et al. Graphite-Teflon composite bienzyme electrodes for the determination of cholesterol in reversed micelles. Application to food samples. Anal Chem. 2001;73:1190–1195.
  • Cao S, Zhang L, Chai Y, et al. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst. Talanta. 2013;109:167–172.
  • Soylemez S, Kanik FE, Nurioglu AG, et al. A novel conducting copolymer: investigation of its matrix properties for cholesterol biosensor applications. Sens Actuats B Chem. 2013;182:322–329.
  • Dervisevic M, Cevik E, Senel M, et al. Amperometric cholesterol biosensor based on reconstituted cholesterol oxidase on boronic acid functional conducting polymers. J Electroanalyt Chem. 2016;776:18–24.
  • Soylemez S, Udum YA, Kesik M, et al. Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol. Sens Actuats B Chem. 2015;212:425–433.
  • Cardosi MF, Turner APF. Mediated electrochemistry: a practical approach to biosensing. In: Turner APF, editor. Advances in biosensors 1. London: JAI Press; 1990;125–169.
  • Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron. 2002;17:441–456.
  • Gilmartin MAT, Hart JP. Fabrication and characterization of a screen-printed, disposable, amperometric cholesterol biosensor. Analyst. 1994;119:2331–2336.
  • Charpentier L, Murr NE. Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Anal Chim Acta. 1995;318:89–93.
  • Nakaminami T, Kuwabata S, Yoneyama H. Electrochemical oxidation of cholesterol catalyzed by cholesterol oxidase with use of an artificial electron mediator. Anal Chem. 1997;69:2367–2372.
  • Nakaminami T, Ito S, Kuwabata S, et al. Amperometric determination of total cholesterol at gold electrodes covalently modified with cholesterol oxidase and cholesterol esterase with use of thionin as an electron mediator. Anal Chem. 1999;71:1068–1076.
  • Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem. 2000;72:1720–1723.
  • Vidal JC, Espuelas J, Castillo JR. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal Biochem. 2004;333:88–98.
  • Rahman MM, Li X, Kim J, et al. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sens Actuats B Chem. 2014;202:536–542.
  • Solanki PR, Arya SK, Nishimura Y, et al. Cholesterol biosensor based on amino-undecanethiol self-assembled monolayer using surface plasmon resonance technique. Langmuir. 2007;23:7398–7403.
  • Solanki PR, Arya SK, Nishimura Y, et al. Application of self-assembled monolayer of 10-carboxy-1-decanethiol for cholesterol biosensor. J Biomed Pharm Eng. 2008;2:7–13.
  • Gopalan AI, Lee KP, Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network. Biosens Bioelectron. 2009;24:2211–2217.
  • Marazuela MD, Cuesta B, Moreno-Bondi MC, et al. Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosens Bioelectron. 1997;12:233–240.
  • Prasad J, Joshi A, Jayant RD, et al. Cholesterol biosensors based on oxygen sensing alginate-silica microspheres. Biotechnol Bioeng. 2011;108:2011–2021.
  • Zhang J, Wang W, Chen S, et al. Bi-pseudoenzyme synergetic catalysis to generate a coreactant of peroxydisulfate for an ultrasensitive electrochemiluminescence-based cholesterol biosensor. Biosens Bioelectron. 2014;57:71–76.
  • Komathi S, Muthuchamy N, Lee KP, et al. Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens Bioelectron. 2016;84:64–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.