2,718
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels

, , , , , , , , , & show all
Pages 968-979 | Received 30 Apr 2017, Accepted 04 Jul 2017, Published online: 18 Jul 2017

References

  • Kumar R, Kumar G, Akhtar MS, et al. Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. J Alloys Compounds. 2015;629:167–172.
  • Petkova P, Francesko A, Perelshtein I, et al. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochem. 2016;29:244–250.
  • Lu P-J, Huang S-C, Chen Y-P, et al. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Analysis. 2015;23:587–594.
  • Xiong H-M. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater Weinheim. 2013;25:5329–5335.
  • Padalia H, Chanda S. Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using ziziphus nummularia leaf extract. Artif Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1282868
  • Antoine TE, Mishra YK, Trigilio J, et al. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res. 2012;96:363–375.
  • Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed Nanotechnol Biol Med. 2017;13:219–230.
  • Bayrami A, Parvinroo S, Habibi-Yangjeh A, et al. Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1337025
  • Nehru LC, Sanjeeviraja C. ZnO nanoparticles by citric acid assisted microwave solution combustion method. J Ceramic Processing Res. 2013;6:712–716.
  • Rao M, Liebenow C, Jayalakshmi M, et al. High-temperature combustion synthesis and electrochemical characterization of LiNiO2, LiCoO2 and LiMn2O4 for lithium-ion secondary batteries. J Solid State Electrochem. 2001;5:348–354.
  • Patil KC, Aruna SC, Mimani T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci. 2002;6:507–512.
  • Patil KC, Hegde MS, Tanu R, Aruna ST. 2008. Chemistry of Nanocrystalline Oxide Materials. Singapore: World Scientific.
  • Parashar UK, Saxena PS, Srivastava A. Bioinspired syntheis of silver nanoparticles. Digest J Nanomater Biostruct. 2009;4:159–166.
  • Begum NA, Mondal S, Basu S, et al. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces. 2009;71:113–118.
  • Forough M, Farhad K. Biological and green synthesis of silver nanoparticles. Turkish J Env Sci. 2010;34:281–287.
  • Mukherjee S, Sushma V, Patra S, et al. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology. 2012;23:455103.
  • Mukherjee S, Vinothkumar B, Prashanthi S, et al. Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment. RSC Adv. 2013;3:2318–2329.
  • Mukherjee S, Chowdhury D, Kotcherlakota R, et al. Potential theranostics application of biosynthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4:316–335.
  • Lee J, Kim HY, Zhou H, et al. Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem. 2011;21:13316–13326.
  • Shankar SS, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–1826.
  • Ahmad A, Senapati S, Khan MI, et al. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2006;1:47–53.
  • Patra S, Mukherjee S, Barui AK, et al. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Engg C. 2015;53:298–309.
  • Noruzi M, Zare D, Khoshnevisan K, et al. Rapid green synthesis of gold nanoparticles using Rosa hybridapetal extract at room temperature. Spectrochimica Acta Part A: Mol Biomol Spectrosc. 2011;79:1461–1465.
  • Montes MO, Mayoral A, Deepak FL, et al. Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. J Nanopart Res. 2011;13:3113–3121.
  • Prashanth GK, Prashanth PA, Bora U, et al. In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala Int J Modern Sci. 2015;1:67–77.
  • Saravanakumar A, Peng MM, Ganesh M, et al. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif Cells Nanomed Biotechnol. 2016;45:1165–1171.
  • Sathishkumar G, Logeshwaran V, Sarathbabu S, et al. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1332635
  • Singh H, Du J, Yi T-H. Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells Nanomed Biotechnol. 2016. DOI:10.1080/21691401.2016.1228663
  • Yoganarasimhan SN. Medicinal plants of India. Bangalore (India): Cyber Media; 2010.
  • Xiao J, Zhang Q, Gao Y-Q, et al. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant and cytotoxic activities. J Agric Food Chem. 2014;62:3584–3590.
  • Vijayan M, Jacob K, Govindaraj Y. Antibacterial activity and mutagenicity of leaves of Indigofera tinctoria Linn. J Exp Integr Med. 2012;2:263–269.
  • Abdolmohammadi MH, Fallahian F, Fakhroueian Z, et al. Application of new ZnO nanoformulation and Ag/Fe/ZnO nanocomposites as water-based nanofluids to consider in vitro cytotoxic effects against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol. 2017. DOI:10.1080/21691401.2017.1290643.
  • Prashanth GK, Prashanth PA, Gadewar M, et al. In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis. Adv Mat Lett. 2017;8:24–29.
  • Kang T, Guan R, Chen X, et al. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett. 2013;8:496.
  • Prashanth GK, Prashanth PA, Nagabhushana BM, et al. In vitro antimicrobial, antioxidant and anticancer studies of ZnO nanoparticles synthesized by precipitation method. Adv Sci Engng Med. 2016;8:306–313.
  • Guan R, Kang T, Lu F, et al. Cytotoxicity, oxidative stress and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett. 2012;7:602.
  • Prashanth GK, Prashanth PA, Yadavalli T, et al. ZnO nanopellets have selective anticancer activity. Mater Sci Eng C. 2016;62:919–926.
  • Prashanth GK, Prashanth PA, Bora U, et al. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel. Mater Sci Eng C. 2017;75:1026–1033.
  • Kokate CK. Practical pharmacognosy. New Delhi (India): Vallabh Prakashan; 2000.
  • Harbone JB. Phytochemical methods. London (UK): Chapman and Hall; 1999.
  • Tiwari P, Kumar B, Kaur M, et al. Phytochemical screening and extraction: a review. Internationale Pharmaceutica Sciencia. 2011;1:98–106.
  • Das D, Nath BC, Phukon P, et al. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerfaces. 2013;111:556–560.
  • Mishra A, Chaudhary N. Study of povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artificial Organs. 2010;23:122–128.
  • Salunkhe AB, Khot VM, Phadatare MR, et al. Combustion synthesis of cobalt ferrite nanoparticles-Influence of fuel to oxidizer ratio. J Alloys Compounds. 2012;514:91–96.
  • Saraswathi R, Lokesh Upadhyay P, Venkatakrishnann R, et al. Phytochemical investigation, analgesic and anti inflamaatory activity of Abutilon Indicum Linn. Int J Pharmacy Pharm Sci. 2011;3:154–156.
  • Bhargava S. Phytochemical screening and evaluation of its repellent activity of Melia azedarach L. Indochemical J Pharm Res. 2013;3:4310–4318.
  • Ahmed MF, Rao AS, Ahemad SR, et al. Phytochemical studies and antioxidant activity of M. azedarach leaves by DPPH scavenging assay. Int J Pharm Appl. 2012;3:271–276.
  • Chopra C. A review of medicinal plants from India. Indian J Pharmacol. 1956;8:416–420.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, et al. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine: Nanotechnol Biol Med. 2011;7:184–192.
  • Hanley C, Layne J, Punnoose A, et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19:295103.
  • Dobrovolskaia M, Clogston J, Neun B, et al. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008;8:2180.
  • Singhal JP, Ray AR. Synthesis of blood compatible polyamide block copolymers. Biomaterials. 2002;23:1139–1145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.