5,939
Views
57
CrossRef citations to date
0
Altmetric
Review Article

An update on nanoparticle-based contrast agents in medical imaging

, , &
Pages 1111-1121 | Received 04 Jun 2017, Accepted 09 Sep 2017, Published online: 21 Sep 2017

References

  • He W, Ai K, Lu L. Nanoparticulate X-ray CT contrast agents. Sci China Chem. 2015;58:753–760.
  • Cormode DP, Jarzyna PA, Mulder WJ, et al. Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62:329–338.
  • Du Y, Lai PT, Leung CH, et al. Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). Int J Mol Sci. 2013;14:18682–18710.
  • Lee SH, Kim BH, Na HB, et al. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wires Nanomed Nanobiotechnol. 2014;6:196–209.
  • Razi M, Dehghani A, Beigi F, et al. The peep of nanotechnology in reproductive medicine: amini-review. Int J Med Lab. 2015;2:1–15.
  • Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62:1052–1063.
  • Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–580.
  • Wang X, Yang L, Chen Z, et al. Application of nanotechnology in cancer therapy and imaging. Ca Cancer J Clin. 2008;58:97–110.
  • Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, et al. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:1972–1978.
  • Sadeghzadeh H, Pilehvar-Soltanahmadi Y, Akbarzadeh A, et al. The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anticancer Agents Med Chem. 2017:17. doi: 10.2174/1871520617666170213115756
  • Rosen JE, Yoffe S, Meerasa A, et al. Nanotechnology and diagnostic imaging: new advances in contrast agent technology. J Nanomed Nanotechnol. 2011;2:115.
  • Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, et al. Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artif Cells Nanomed Biotechnol. 2017;45:1201–1206.
  • Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F, et al. Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 2017 Jan 12]. doi: 10.1080/21691401.2016.1276922
  • Mohammadian F, Abhari A, Dariushnejad H, et al. Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev. 2016;9:e4190.
  • Mohammadian F, Abhari A, Dariushnejad H, et al. Upregulation of Mir-34a in AGS gastric cancer cells by a PLGA-PEG-PLGA chrysin nano formulation. Asian Pac J Cancer Prev. 2015;16:8259–8263.
  • Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–1265.
  • Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol. Forthcoming. [cited 2017 Jul 5]. doi: 10.1080/21691401.2017.1347879
  • Cormode DP, Skajaa T, Fayad ZA, et al. Nanotechnology in medical imaging probe design and applications. Arterioscler Thromb Vasc Biol. 2009;29:992–1000.
  • Lee JH, Park G, Hong GH, et al. Design considerations for targeted optical contrast agents. Quant Imaging Med Surg. 2012;2:266–273.
  • Surendiran A, Sandhiya S, Pradhan S, et al.Novel applications of nanotechnology in medicine. Indian J Med Res. 2009;130:689–701.
  • Ahn S, Jung SY, Lee SJ. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules. 2013;18:5858–5890.
  • Michalet X, Pinaud F, Bentolila L, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544.
  • Hong S, Chang Y, RI. Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc. 2010;56:868–873.
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715–728.
  • Ryvolova M, Chomoucka J, Drbohlavova J, et al. Modern micro and nanoparticle-based imaging techniques. Sensors. 2012;12:14792–14820.
  • Farle M. Imaging techniques: nanoparticle atoms pinpointed. Nature. 2017;542:35–36.
  • Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8:4593–4596.
  • Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9:37–52.
  • Cho EC, Glaus C, Chen J, et al. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med. 2010;16:561–573.
  • Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25:2641–2660.
  • Rand D, Ortiz V, Liu Y, et al. Nanomaterials for X-ray imaging: gold nanoparticle enhancement of X-ray scatter imaging of hepatocellular carcinoma. Nano Lett. 2011;11:2678–2683.
  • Naha PC, Al Zaki A, Hecht E, et al. Dextran coated bismuth–iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. J Mater Chem B 2014;2:8239–8248.
  • Mukundan Jr S, Ghaghada KB, Badea CT, et al. A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J Roentgenol. 2006;186:300–307.
  • Chien CC, Chen HH, Lai SF, et al. Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnology. 2012;10:10.
  • Wathen CA, Foje N, Avermaete Tv, et al. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors. 2013;13:6957–6980.
  • Bae H, Ahmad T, Rhee I, et al. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett. 2012;7:1–5.
  • Weinstein JS, Varallyay CG, Dosa E, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30:15–35.
  • Roszek B, Geertsma R. Nanotechnology in medical applications: state-of-the-art in materials and devices. RIVM Report 265001001. Utrecht, Netherlands; 2005.
  • Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21:2133–2148.
  • Fang C, Zhang M. Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem. 2009;19:6258–6266.
  • Khalkhali M, Rostamizadeh K, Sadighian S, et al. The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study. DARU J Pharm Sci. 2015;23:1.
  • Neuberger T, Schöpf B, Hofmann H, et al. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–496.
  • Kamaly N, Miller AD. Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci. 2010;11:1759–1776.
  • Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2011;108:18837–18842.
  • Helm L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med Chem. 2010;2:385–396.
  • Wang H, Wang HS, Liu ZP. Agents that induce pseudo-allergic reaction. Drug Discov Ther. 2011;5:211–219.
  • Goldman LW. Principles of CT and CT technology. J Nucl Med Technol. 2007;35:115–128.
  • Hasebroock KM, Serkova NJ. Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol. 2009;5:403–416.
  • Lee GY, Qian WP, Wang L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7:2078–2089.
  • Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, et al. Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials. 2011;32:8562–8573.
  • Giljohann DA, Seferos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49:3280–3294.
  • Cole LE, Ross RD, Tilley JM, et al. Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine (London, England). 2015;10:321–341.
  • Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–1119.
  • Liu H, Xu Y, Wen S, et al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chem Eur J. 2013;19:6409–6416.
  • Wang H, Zheng L, Peng C, et al. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials. 2013;34:470–480.
  • Zhang S, Gong M, Zhang D, et al. Thiol-PEG-carboxyl-stabilized Fe2O3/Au nanoparticles targeted to CD105: synthesis, characterization and application in MR imaging of tumor angiogenesis. Eur J Radiol. 2014;83:1190–1198.
  • Boote E, Fent G, Kattumuri V, et al. Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol. 2010;17:410–417.
  • Sun IC, Na JH, Jeong SY, et al. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res. 2014;31:1418–1425.
  • Jackson P, Periasamy S, Bansal V, et al. Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging. Australas Phys Eng Sci Med. 2011;34:243–249.
  • Yao L, Daniels J, Moshnikova A, et al. pHLIP peptide targets nanogold particles to tumors. Proc Natl Acad Sci USA. 2013;110:465–470.
  • Eck W, Nicholson AI, Zentgraf H, et al. Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano Lett. 2010;10:2318–2322.
  • Hainfeld JF, O'Connor MJ, Dilmanian FA, et al. Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol. 2011;84:526–533.
  • Chattopadhyay N, Cai Z, Kwon YL, et al. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. 2013;137:81–91.
  • Li J, Chaudhary A, Chmura SJ, et al. A novel functional CT contrast agent for molecular imaging of cancer. Phys Med Biol. 2010;55:4389–4397.
  • Allijn IE, Leong W, Tang J, et al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano. 2013;7:9761–9770.
  • Zhang Z, Ross RD, Roeder RK. Preparation of functionalized gold nanoparticles as a targeted X-ray contrast agent for damaged bone tissue. Nanoscale. 2010;2:582–586.
  • Cole LE, Vargo-Gogola T, Roeder RK. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications. Biomaterials. 2014;35:2312–2321.
  • Chen Q, Li K, Wen S, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2013;34:5200–5209.
  • Ross RD, Cole LE, Tilley JMR, et al. Effects of functionalized gold nanoparticle size on X-ray attenuation and substrate binding affinity. Chem Mater. 2014;26:1187–1194.
  • Peng C, Qin J, Zhou B, et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem. 2013;4:4412–4424.
  • Cai H, Li K, Li J, et al. Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small. 2015;11:4584–4593.
  • Sun IC, Eun DK, Na JH, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chemistry. 2009;15:13341–13347.
  • Cormode DP, Roessl E, Thran A, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256:774–782.
  • Cole LE, Vargo-Gogola T, Roeder RK. Contrast-enhanced X-ray detection of breast microcalcifications in a murine model using targeted gold nanoparticles. ACS Nano. 2014;8:7486–7496.
  • Ross RD, Roeder RK. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite. J Biomed Mater Res A. 2011;99:58–66.
  • Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
  • Reuveni T, Motiei M, Romman Z, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859–2864.
  • Hayashi K, Nakamura M, Miki H, et al. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chem Commun. 2013;49:5334–5336.
  • Torchilin VP. Lipid-core micelles for targeted drug delivery. Curr Drug Deliv. 2005;2:319–327.
  • Seddon J, Robins J, Gulik-Krzywicki T, et al. Inverse micellar phases of phospholipids and glycolipids. Phys Chem Chem Phys. 2000;2:4485–4493.
  • Bastakoti BP, Wu KCW, Inoue M, et al. Multifunctional core-shell-corona-type polymeric micelles for anticancer drug-delivery and imaging. Chem Eur J. 2013;19:4812–4817.
  • Song Z, Feng R, Sun M, et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci. 2011;354:116–123.
  • Fulton JL, Smith RD. Reverse micelle and microemulsion phases in supercritical fluids. J Phys Chem. 1988;92:2903–2907.
  • Imae T, Kamiya R, Ikeda S. Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci. 1985;108:215–225.
  • Presa Soto A, Gilroy JB, Winnik MA, et al. Pointed‐oval‐shaped micelles from crystalline‐coil block copolymers by crystallization‐driven living self‐assembly. Angew Chem Int Ed Engl. 2010;122:8396–8399.
  • Williams D, Fredrickson G. Cylindrical micelles in rigid-flexible diblock copolymers. Macromolecules. 1992;25:3561–3568.
  • Lühmann B, Finkelmann H. A lyotropic nematic phase of lamellar micelles (N L) obtained by a non-ionic surfactant in aqueous solution. Colloid Polym Sci. 1986;264:189–192.
  • Zhao J, Ma L, Xiang X, et al. Microcalorimetric studies on the energy release of isolated rat mitochondria under different concentrations of gadolinium (III). Chemosphere. 2016;153:414–418.
  • Park JA, Lee YJ, Ko IO, et al. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun. 2014;455:246–250.
  • Perera VS, Chen G, Cai Q, et al. Nanoparticles of gadolinium-incorporated prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging. Analyst. 2016;141:2016–2022
  • Frangville C, Gallois M, Li Y, et al. Hyperbranched polymer mediated size-controlled synthesis of gadolinium phosphate nanoparticles: colloidal properties and particle size-dependence on MRI relaxivity. Nanoscale. 2016;8:4252–4259.
  • Xiao Y, Liu Y, Yang S, et al. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf B Biointerfaces. 2016;141:83–92.
  • Lorenzato C, Oerlemans C, van Elk M,et al. MRI monitoring of nanocarrier accumulation and release using gadolinium-SPIO co-labelled thermosensitive liposomes. Contrast Media Mol Imaging 2016;11:184–194.
  • Hou L, Yang X, Ren J, et al. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomedicine. 2016;11:607–624.
  • Holt BD, Law JJ, Boyer PD, et al. Subcellular partitioning and analysis of Gd3+-loaded ultrashort single-walled carbon nanotubes. ACS Appl Mater Interfaces. 2015;7:14593–14602.
  • Law JJ, Guven A, Wilson LJ. Relaxivity enhancement of aquated tris(beta-diketonate)gadolinium(III) chelates by confinement within ultrashort single-walled carbon nanotubes. Contrast Media Mol Imaging. 2014;9:409–412.
  • Kumar S, Meena VK, Hazari PP, et al. Fitc-dextran entrapped and silica coated gadolinium oxide nanoparticles for synchronous optical and magnetic resonance imaging applications. Int J Pharm. 2016;506:242–252.
  • Fries P, Morr D, Muller A, et al. Evaluation of a gadolinium-based nanoparticle (AGuIX) for contrast-enhanced MRI of the liver in a rat model of hepatic colorectal cancer metastases at 9.4 Tesla. Rofo. 2015;187:1108–1115.
  • Digilio G, Munoz Ubeda M, Carniato F, tet al. Gadolinium-decorated silica microspheres as redox-responsive MRI probes for applications in cell therapy follow-up. Chemistry. 2016;22:7716–7720.
  • Szpak A, Kania G, Skórka T, et al. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives. J Nanopart Res. 2013;15:1372.
  • Thomas R, Park IK, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci. 2013;14:15910–15930.
  • Liu G, Gao J, Ai H, et al. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–1545.
  • Baumgartner J, Bertinetti L, Widdrat M, et al. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One. 2013;8:e57070.
  • Issa B, Obaidat IM, Albiss BA, et al. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266–21305.
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–2110.
  • Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem. 2009;19:6274–6293.
  • Yang RM, Fu CP, Li NN, et al. Glycosaminoglycan-targeted iron oxide nanoparticles for magnetic resonance imaging of liver carcinoma. Mater Sci Eng C Mater Biol Appl. 2014;45:556–563.
  • Shevtsov MA, Nikolaev BP, Ryzhov VA, et al. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. Nanomedicine. 2016;12:611–621.
  • Szpak A, Fiejdasz S, Prendota W, et al. T(1)–T(2) Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res. 2014;16:2678.
  • Zhang H, Li J, Hu Y, et al. Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J Ovarian Res. 2016;9:19.
  • Wan X, Song Y, Song N, et al. The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging. Carbohydr Res. 2016;419:33–40.
  • Santra S, Jativa SD, Kaittanis C, et al. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano. 2012;6:7281–7294.
  • Zhang F, Kong XQ, Li Q, et al. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging. Talanta. 2016;148:108–115.
  • Ni D, Zhang J, Bu W, et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials. 2016;76:218–225.
  • Crooks RM, Zhao M, Sun L, et al. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res. 2001;34:181–190.
  • Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 2002;19:1310–1316.
  • Scott RW, Wilson OM, Crooks RM. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B. 2005;109:692–704.
  • Omidi Y, Hollins AJ, Drayton R, et al. Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target. 2005;13:431–443.
  • Majoros IJ, Myc A, Thomas T, et al. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules. 2006;7:572–579.
  • Esumi K, Isono R, Yoshimura T. Preparation of PAMAM-and PPI-metal (silver, platinum, and palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir. 2004;20:237–243.
  • Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, et al. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm. 2016;509:244–254.
  • Montazeri M, Pilehvar-Soltanahmadi Y, Mohaghegh M, et al. Antiproliferative and apoptotic effect of dendrosomal curcumin nanoformulation in P53 mutant and wide-type cancer cell lines. Anticancer Agents Med Chem. 2017;17:662–673.
  • Luo D, Haverstick K, Belcheva N, et al. Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules. 2002;35:3456–3462.
  • Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57:2215–2237.
  • Zheng J, Dickson RM. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc. 2002;124:13982–13983.
  • Lemon BI, Crooks RM. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J Am Chem Soc. 2000;122:12886–12887.
  • Zhu J, Fu F, Xiong Z, et al. Dendrimer-entrapped gold nanoparticles modified with RGD peptide and alpha-tocopheryl succinate enable targeted theranostics of cancer cells. Colloids Surf B Biointerfaces. 2015;133:36–42.
  • Markowicz-Piasecka M, Sikora J, Szymański P, et al. PAMAM dendrimers as potential carriers of gadolinium complexes of iminodiacetic acid derivatives for magnetic resonance imaging. J Nanomater. 2015;2015:394827.
  • Zhou B, Yang J, Peng C, et al. PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surfaces B Biointerfaces 2016;140:489–496.
  • Zavari-Nematabad A, Alizadeh-Ghodsi M, Hamishehkar H, et al. Development of quantum-dot-encapsulated liposome-based optical nanobiosensor for detection of telomerase activity without target amplification. Anal Bioanal Chem. 2017;409:1301–1310.
  • Qu X, Niu Q, Tian C, et al. A green synthesis of high fluorescence nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury (II) ions and biothiols. Anal Methods. 2016;8:1565–1571.
  • Belykh V, Yakovlev D, Schindler J, et al. Large anisotropy of electron and hole g factors in infrared-emitting InAs/InAlGaAs self-assembled quantum dots. 2015;93:125302.
  • Yang C, Gdor I, Amit Y, et al. Exciton dynamics in Cu-doped InAs colloidal quantum dots. Ultrafast Phenomena XIX: Springer; 2015.
  • Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys. 2015;87:347.
  • Rabouw FT, Kamp M, van Dijk-Moes RJ, et al. Delayed exciton emission and its relation to blinking in CdSe quantum dots. Nano Lett. 2015;15:7718–7725.
  • Vu TQ, Lam WY, Hatch EW, et al. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res. 2015;360:71–86.
  • Ding K, Jing L, Liu C, et al. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors. Biomaterials. 2014;35:1608–1617.
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2012;64:37–48.
  • Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–1762.
  • Ke H, Chen H. Multimodal micelles for theranostic nanomedicine. In: Dai Z, editor. Advances in nanotheranostics II: Springer; 2016. p. 355–81.
  • Kim KS, Park W, Hu J, et al. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials. 2014;35:337–343.
  • Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112:2373–2433.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275:496–502.
  • Karamipour S, Sadjadi MS, Farhadyar N. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core–shell for targeted drug delivery application. Spectrochim Acta A Mol Biomol Spectrosc. 2015;148:146–155.
  • Zhou N, Ye C, Polavarapu L, et al. Controlled preparation of Au/Ag/SnO 2 core–shell nanoparticles using a photochemical method and applications in LSPR based sensing. Nanoscale. 2015;7:9025–9032.
  • Ho LC, Hsu CH, Ou CM, et al. Unibody core-shell smart polymer as a theranostic nanoparticle for drug delivery and MR imaging. Biomaterials. 2015;37:436–446.
  • Ratanajanchai M, Lee DH, Sunintaboon P, et al. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging. J Colloid Interface Sci. 2014;415:70–76.
  • Zhu H, Tao J, Wang W, et al. Magnetic, fluorescent, and thermo-responsive Fe3O4rare earth incorporated poly(St-NIPAM) core-shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes. Biomaterials. 2013;34:2296–2306.
  • Lee PW, Hsu SH, Wang JJ, et al. The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials. 2010;31:1316–1324.
  • Yu F, Zhang L, Huang Y, et al. The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality. Biomaterials. 2010;31:5842–5848.
  • Zhou L, Zheng X, Gu Z, et al. Mesoporous NaYbF4@NaGdF4 core-shell up-conversion nanoparticles for targeted drug delivery and multimodal imaging. Biomaterials. 2014;35:7666–7678.
  • Kiessling F, Mertens ME, Grimm J, et al. Nanoparticles for imaging: top or flop? Radiology. 2014;273:10–28.
  • Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9:55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.