4,023
Views
29
CrossRef citations to date
0
Altmetric
Review

Current development in novel drug delivery systems of bioactive molecule plumbagin

, , , &
Pages 209-218 | Received 09 Oct 2017, Accepted 12 Dec 2017, Published online: 03 Jan 2018

References

  • Salanki A, Kutty SK. Plant derived compounds in clinical trials. Drug Discov Today. 2007;13:161–171.
  • Saraf AS. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81:680–689.
  • Sumsakul W, Karbwang J, Na-Bangchang K. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabelled plumbagin in healthy and Plasmodium berghei-infected mice. Exp Parasitol. 2016;161:54–61.
  • Kawiak A, Zawacka-Pankau J, Lojkowska E. Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod. 2012;75:747–751.
  • Hazra B, Sarkar R, Bhattacharyya S, et al. Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma in vivo and Leishmania donovani Promastigotes in vitro. Phytother Res. 2002;16:133–137.
  • Jackson JK, Higo T, Hunter WL, et al. Topoisomerase inhibitors as anti-arthritic agents. Inflamm Res. 2008;57:126–134.
  • Zhang Z, Deng W, Kang R, et al. Plumbagin protects mice from lethal sepsis by modulating immunometabolism upstream of PKM2. Mol Med. 2016;22:162–172.
  • Sankar R, Devamanoharan P, Raghupathi G, et al. Lipid peroxidation in plumbagin administered rats. J Biosci. 1987;12:267–271.
  • Suraveratum N, Krungkrai SR, Leangaramgul P, et al. Purification and characterization of Plasmodium falciparum succinate dehydrogenase. Mol Biochem Parasitol. 2000;105:215–222.
  • Aziz MH, Dreckschmidt NE, Verma AK. Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res. 2008;68:9024–9032.
  • Chen CA, Chang HH, Kao CY, et al. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology. 2009;9:797–809.
  • Sandur SK, Pandey MK, Sung B, et al. 5-Hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res. 2010;8:107–118.
  • Xu TP, Shen H, Liu LX, et al. Plumbagin from Plumbago zeylanica L. induces apoptosis in human non-small cell lung cancer cell lines through NF-κB inactivation. Asian Pac J Cancer Prev. 2013;14:2325–2331.
  • Hsu YL, Cho CY, Kuo PL, et al. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther. 2006;318:484–494.
  • Shieh JM, Chiang TA, Chang WT, et al. Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-kappaB and AP-1 via ERK harmacody pathway in A549 human lung cancer cells. Mol Cell Biochem. 2010;335:181–193.
  • Wang CC, Chiang YM, Sung SC, et al. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett. 2008;259:82–98.
  • Shih YW, Lee YC, Wu PF, et al. Plumbagin inhibits invasion and migration of liver cancer HepG2 cells by decreasing productions of matrix metalloproteinase-2 and urokinaseplasminogen activator. Hepatol Res. 2009;39:998–1009.
  • Ding Y, Chen ZJ, Liu S, et al. Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol. 2005;57:111–116.
  • Srinivas P, Gopinath G, Banerji A, et al. Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog. 2004;40:201–211.
  • Vijayakumar R, Senthilvelan M, Ravindran R, et al. Plumbago zeylanica action on blood coagulation profile with and without blood volume reduction. Vascul Pharmacol. 2006;45:86–90.
  • Jeong SH, Choi JS, Ko YK, et al. The discovery of bioisoster compound for plumbagin using the knowledge-based rational method. J Mol Struct. 2015;1085:84–89.
  • Hsieh YJ, Lin LC, Tsai TH. Measurement and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;844:1–5.
  • Chen A, Zhou X, Tang S, et al. Evaluation of the inhibition potential of plumbagin against cytochrome P450 using LC–MS/MS and cocktail approach. Sci Rep. 2016;6:28482.
  • Bothiraja C, Pawar AP, Mali AJ, et al. Improved pharmaceutical properties of surface modified bioactive plumbagin crystals. Int J Surf Sci Eng. 2013;7:181–195.
  • Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artif Cells Nanomed Biotechnol. 2017;45:1478–1489.
  • Panahi Y, Farshbaf M, Mohammadhosseini M, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol. 2017;45:788–799.
  • Tiwari SB, Pai RM, Udupa N. Temperature sensitive liposomes of plumbagin: characterization and in vivo evaluation in mice bearing melanoma B16F1. J Drug Target. 2002;10:585–591.
  • Sunil Kumar MR, Aithal BK, Udupa N, et al. Formulation of plumbagin loaded long circulating pegylated liposomes: in vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv. 2011;18:511–522.
  • Drummond DC, Meyer O, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:691–743.
  • Behnam B, Rezazadehkermani M, Ahmadzadeh A, et al. Microniosomes for concurrent doxorubicin and iron oxide nanoparticles loading; preparation, characterization and cytotoxicity studies. Artif Cells Nanomeds Biotechnol. 2017 [Apr 4]; [11 p.]. DOI:https://doi.org/10.1080/21691401.2017.1296850
  • D’Souza Singh UV, Aithal KS, et al. Antifertility activity of niosomal HPβCD-Plumbagin complex. Indian J Pharm Sci. 1998;60:36–40.
  • Oommen E, Dinesh Shenoy B, Udupa N, et al. Antitumour efficacy of cyclodextrin-complexed and harmac encapsulated plumbagin in mice bearing melanoma B16F1. Pharm Pharmacol Commun. 1999;5:281–285.
  • Naresh RA, Udupa N, Devi PU. Niosomal plumbagin with reduced toxicity and improved anticancer activity in BALB/C mice. J Pharm Pharmacol. 1996;48:1128–1132.
  • Kini DP, Pandey S, Shenoy BD, et al. Antitumor and antifertility activities of plumbagin controlled release formulations. Indian J Exp Biol. 1997;35:374–379.
  • Sah AK, Vyas A, Suresh PK, et al. Application of nanocarrier-based drug delivery system in treatment of oral cancer. Artif Cells Nanomeds Biotechnol. 2017 [Sep 7]; [8 p.]. DOI:https://doi.org/10.1080/21691401.2017.1373284
  • Afsharzadeh M, Hashemi M, Mokhtarzadeh A, et al. Recent advance in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif Cells Nanomeds Biotechnol 2017 [Sep 28]; [16 p.]. DOI:https://doi.org/10.1080/21691401.2017.1376675
  • Indhumathi D, Remya PN, Sangeetha S. Formulation trails on nanoparticular preparation for easy scale up through different techniques. J Chem Pharm Sci. 2013;6:170–174.
  • Bothiraja C, Kapare HS, Pawar AP, et al. Development of plumbagin-loaded phospholipid-tween mixed micelles: formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther Deliv. 2013;4:1247–1259.
  • Pawar A, Patel R, Arulmozhi S, et al. D-a-Tocopheryl polyethylene glycol 1000 succinate conjugated folic acid nanomicelles: towards enhanced bioavailability, stability, safety, prolonged drug release and synergized anticancer effect of plumbagin. RSC Adv. 2016;6:78106–78121.
  • Wang W, Lei Y, Sui H, et al. Fabrication and evaluation of nanoparticle-assembled BSA microparticles for enhanced liver delivery of glycyrrhetinic acid. Artif Cells Nanomeds Biotechnol. 2017;45:740–747.
  • Singh UV, Bisht KS, Rao S, et al. Plumbagin-loaded PLGA microspheres with and enhanced antitumour efficacy reduced in mice toxicity. Pharm Pharmacol Commun. 1996;2:407–409.
  • Mandala RSK, Aithal K, Anandam A, et al. Preparation, in vitro characterization, pharmacokinetic, and harmacodynamics evaluation of chitosan-based plumbagin microspheres in mice bearing B16F1 melanoma. Drug Deliv. 2010;17:103–113.
  • Gorjikhah F, Jalalian FA, Salehi R, et al. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. Artif Cells Nanomeds Biotechnol. 2017;45:432–440.
  • Srinivas P, Patra CR, Bhattacharya S, et al. Cytotoxicity of naphthoquinones and their capacity to generate reactive oxygen species is quenched when conjugated with gold nanoparticles. Int J Nanomedicine. 2011;6:2113–2122.
  • Appadurai P, Rathinasamy K. Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol. 2015;9:264–272.
  • Hafeez BB, Kashyap VK, Boya VN, et al. Novel nanoparticle formulation of Plumbagin for pancreatic cancer treatment. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16–20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl).
  • Shahida Parveen SD, Affrose A, Suresh Kumar B, et al. Synthesis, characterization, and DNA binding studies of nanoplumbagin. J Nanomater. 2014;2014:9.
  • Duraipandy N, Lakra R, Kunnavakkam VS, et al. Caging of plumbagin on silver nanoparticles imparts selectivity and sensitivity to plumbagin for targeted cancer cell apoptosis. Metallomics. 2014;6:2025–2033.
  • Bothiraja C, Pawar AP, Mali AJ, et al. Improved pharmaceutical properties of surface modified bioactive plumbagin crystals. Int J Sur Sci Eng. 2013;7:181–195.
  • Rajalakshmi S, Pawar AP, Mali AJ, et al. Crystal engineering of bioactive plumbagin using anti-solvent precipitation, melt solidification and sonocrystallization techniques. Mater Res Express. 2014;1:1–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.