7,768
Views
47
CrossRef citations to date
0
Altmetric
Review

Using gold nanoparticles in diagnosis and treatment of melanoma cancer

, , , , , , & show all
Pages 462-471 | Received 06 Oct 2017, Accepted 17 Jan 2018, Published online: 26 Jan 2018

References

  • Galib MB, Mashru M, Jagtap C, et al. Therapeutic potentials of metals in ancient India: a review through Charaka Samhita. J Ayurveda Integr Med. 2011;2:55.
  • Kean W, Kean I. Clinical pharmacology of gold. Inflammopharma-cology. 2008;16:112–125.
  • Anthony F. Panacea aurea: sive tractatus duo de ipsius auro potabili. Ex Bibliopolio Frobeniano.Hamburgi: ex Bibliopolio Frobeniano; 1618.
  • Rao CR, Kulkarni GU, Thomas PJ, et al. Metal nanoparticles and their assemblies. Chem Soc Rev. 2000;29:27–35.
  • Peruski AH, Peruski LF. Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol. 2003;10:506–513.
  • Aryal S, Bisht G. New paradigm for a targeted cancer therapeutic approach: a short review on potential synergy of gold nanoparticles and cold atmospheric plasma. Biomedicines. 2017;5:38.
  • Gharatape A, Salehi R. Recent progress in theranostic applications of hybrid gold nanoparticles. Eur J Med Chem. 2017;138:221.
  • Carabineiro SAC. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules. 2017;22:857.
  • Saini M, Masirkar Y, Varshney R, et al. Fluorogen-free aggregation induced NIR emission from gold nanoparticles. Chem Commun (Camb). 2017;53:6199–6202.
  • Tao W, Ziemer KS, Gill HS. Gold nanoparticle–M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine. 2014;9:237–251.
  • Takemura K, Adegoke O, Takahashi N, et al. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens Bioelectron. 2017;89:998–1005.
  • Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vac Immunother. 2014;10:321–332.
  • Gao J, Huang X, Liu H, et al. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir. 2012;28:4464–4471.
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41:2256–2282.
  • Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71.
  • Maverakis E, Cornelius LA, Bowen GM, et al. Metastatic melanoma – a review of current and future treatment options. Acta Derm Venereol. 2015;95:516–527.
  • Eyvazzadeh N, Shakeri-Zadeh A, Fekrazad R, et al. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci. 2017;32:1469–1477.
  • Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold‐nanoparticle‐mediated thermal therapies. Small. 2011;7:169–183.
  • Day ES, Zhang L, Thompson PA, et al. Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine. 2012;7:1133–1148.
  • Biosciences IN. Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck. ClinicalTrials gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000.
  • Biosciences N. Inc. Efficacy study of AuroLase therapy in subjects with primary and/or metastatic lung tumors. ClinicalTrials gov [Internet]. Bethesda (MD): National Library of Medicine; 2000.
  • Norregaard K, Jørgensen JT, Simón M, et al. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy. PLoS One. 2017;12:e0177997.
  • Huang X, Jain PK, El-Sayed IH, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217.
  • Perrault SD, Walkey C, Jennings T, et al. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–1915.
  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. AACR. 2013;73:2412?2417.
  • Raeesi V, Chan WC. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods. Nanoscale. 2016;8:12524–12530.
  • Park J-H, von Maltzahn G, Xu MJ, et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci. 2010;107:981–986.
  • Huang X, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128:2115–2120.
  • Mackey MA, Ali MR, Austin LA, et al. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B. 2014;118:1319–1326.
  • Wang S, Xu H, Ye J. Plasmonic rod-in-shell nanoparticles for photothermal therapy. Phys Chem Chem Phys. 2014;16:12275–12281.
  • Tchounwou C, Sinha SS, Viraka Nellore BP, et al. Hybrid theranostic platform for second near-IR window light triggered selective two-photon imaging and photothermal killing of targeted melanoma cells. ACS Appl Mater Interfaces. 2015;7:20649–20656.
  • Stone J, Jackson S, Wright D. Biological applications of gold nanorods. Wires Nanomed Nanobiotechnol. 2011;3:100–109.
  • Chen H, Zhang X, Dai S, et al. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics. 2013;3:633.
  • Kim S, Chen Y-S, Luke G, et al. In-vivo ultrasound and photoacoustic image-guided photothermal cancer therapy using silica-coated gold nanorods. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:891–897.
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12:2313–2333.
  • Monopoli MP, Åberg C, Salvati A, et al. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–786.
  • Dai Q, Walkey C, Chan WC. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed. 2014;53:5093–5096.
  • Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41:2780–2799.
  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62:90–99.
  • Wei R, Xi W, Wang H, et al. In situ crystal growth of gold nanocrystals on upconversion nanoparticles for synergetic chemo-photothermal therapy. Nanoscale. 2017;9:12885–12896.
  • Jing L, Liang X, Deng Z, et al. Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials. 2014;35:5814–5821.
  • Mustafaoglu N, Kiziltepe T, Bilgicer B. Site-specific conjugation of antibody on gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale. 2017;9:8684?8694.
  • Huefner A, Septiadi D, Wilts BD, et al. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes. Methods. 2014;68:354–363.
  • El-Hussein A, Mfouo-Tynga I, Abdel-Harith M, et al. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J Photochem Photobiol B: Biol. 2015;153:67–75.
  • Ai J, Xu Y, Lou B, et al. Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta. 2014;118:54–60.
  • Kim D, Jeong YY, Jon S. A drug-loaded aptamer–gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–3696.
  • Wang H, Zheng L, Peng C, et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials. 2011;32:2979–2988.
  • Peng C, Zheng L, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012;33:1107–1119.
  • Zhang Q, Iwakuma N, Sharma P, et al. Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology. 2009;20:395102.
  • Kim C, Cho EC, Chen J, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010;4:4559–4564.
  • Zhang YS, Wang Y, Wang L, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics. 2013;3:532.
  • Kim S, Chen Y-S, Luke GP, et al. In vivo three-dimensional spectroscopic photoacoustic imaging for monitoring nanoparticle delivery. Biomed Opt Express. 2011;2:2540–2550.
  • Bao C, Beziere N, del Pino P, et al. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers. Small. 2013;9:68–74.
  • Thomas T, Dale P, Weight R, et al. Photoacoustic detection of breast cancer cells in human blood. Proc SPIE Int Soc Opt Eng. 2008;1:2.
  • Viator JA, Gupta S, Goldschmidt BS, et al. Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol. 2010;6:187–191.
  • Li P-C, Wang C-RC, Shieh D-B, et al. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express. 2008;16:18605–18615.
  • Song KH, Kim C, Cobley CM, et al. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 2008;9:183–188.
  • Song KH, Kim C, Maslov K, et al. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. Eur J Radiol. 2009;70:227–231.
  • Penders J, Stolzoff M, Hickey DJ, et al. shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. IJN. 2017;12:2457.
  • Khan AU, Yuan Q, Wei Y, et al. Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J Photochem Photobiol B: Biol. 2016;162:273–277.
  • Ke´kicheff P, Schneider GF, Decher G. Size-controlled polyelectrolyte complexes: direct measurement of the balance of forces involved in the triggered collapse of layer-by-layer assembled nanocapsules. Langmuir. 2013;29:10713–10726.
  • Oaew S, Charlermroj R, Pattarakankul T, et al. Gold nanoparticles/horseradish peroxidase encapsulated polyelectrolyte nanocapsule for signal amplification in Listeria monocytogenes detection. Biosens Bioelectron. 2012;34:238–243.
  • Mäsing F, Mardyukov A, Doerenkamp C, et al. Controlled light-mediated preparation of gold nanoparticles by a Norrish Type I reaction of photoactive polymers. Angew Chem Int Ed Engl. 2015;54:12612–12617.
  • Chen R-J, Chen P-C, Prasannan A, et al. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity. Mater Sci Eng: C. 2016;63:678–685.
  • Kim K, Oh KS, Park DY, et al. Doxorubicin/gold-loaded core/shell nanoparticles for combination therapy to treat cancer through the enhanced tumor targeting. J Control Release. 2016;228:141–149.
  • Bagga P, Siddiqui H, Akhtar J, et al. Gold nanoparticles conjugated levofloxacin: for improved antibacterial activity over levofloxacin alone. Curr Drug Deliv. 2017;14:1114–1119.
  • Li J, Li Q, Ma X, et al. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. IJN. 2016;11:5931.
  • Jakubec P, Urbanová V, Medříková Z, et al. Advanced sensing of antibiotics with magnetic gold nanocomposite: electrochemical detection of chloramphenicol. Chem Eur J. 2016;22:14279–14284.
  • Kannan R, Zambre A, Chanda N, et al. Functionalized radioactive gold nanoparticles in tumor therapy. Wires Nanomed Nanobiotechnol. 2012;4:42–51.
  • Gargioni E, Schulz F, Raabe A, et al. Targeted nanoparticles for tumour radiotherapy enhancement—the long dawn of a golden era? Ann Transl Med. 2016;4:523.
  • Golchin K, Golchin J, Ghaderi S, et al. Gold nanoparticles applications: from artificial enzyme till drug delivery. Artif Cells Nanomed Biotechnol. 2017;1–5. doi: https://doi.org/10.1080/21691401.2017.1305393 [Epub ahead of print]
  • Vetro M, Safari D, Fallarini S, et al. Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model. Nanomedicine. 2017;12:13–23.
  • Devanabanda M, Latheef SA, Madduri R. Immunotoxic effects of gold and silver nanoparticles: inhibition of mitogen-induced proliferative responses and viability of human and murine lymphocytes in vitro. J Immunotoxicol. 2016;13:897–902.
  • Cruz LJ, Tacken PJ, Rueda F, et al. 8 targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol. 2012;509:143.
  • Fallarini S, Paoletti T, Battaglini CO, et al. Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale. 2013;5:390–400.
  • Bastús NG, Sánchez-Tilló E, Pujals S, et al. Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunol. 2009;46:743–748.
  • Jewell CM, López SCB, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci. 2011;108:15745–15750.
  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–1671.
  • Almeida JPM, Chen AL, Foster A, et al. In vivo biodistribution of nanoparticles. Nanomedicine (Lond). 2011;6:815–835.
  • Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–515.
  • Paul AM, Shi Y, Acharya D, et al. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J Gen Virol. 2014;95:1712–1722.
  • Ahiwale S, Bankar A, Tagunde S, et al. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol. 2017;57:1–7.
  • Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. Adv Mater Weinheim. 2012;24:3724–3746.
  • Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol Mech Dis. 2014;9:239–271.
  • Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–2147.
  • Viros A, Fridlyand J, Bauer J, et al. Improving melanoma classification by integrating genetic and morphologic features. PLoS Med. 2008;5:e120.
  • Markovic SN, Erickson LA, Rao RD, et al., editors. Malignant melanoma in the 21st century. Part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc. 2007;82:364–380.
  • Rastrelli M, Tropea S, Rossi CR, et al. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28:1005–1011.
  • Sandru A, Voinea S, Panaitescu E, et al. Survival rates of patients with metastatic malignant melanoma. J Med Life. 2014;7:572.
  • Balch CM, Soong SJ, Atkins MB, et al. An evidence‐based staging system for cutaneous melanoma. CA: Cancer J Clin. 2004;54:131–149.
  • Sharif S, Haque AU, Ahmed A. Blue melanoma simulating blue nevus. Int. j. pathol. 2013;11:73–77.
  • Trinh VA, Zobniw C, Hwu W-J. The efficacy and safety of adjuvant interferon-alfa therapy in the evolving treatment landscape for resected high-risk melanoma. Expert Opin Drug Saf. 2017;16:933–940.
  • Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116:1757–1766.
  • Gonzalez RJ, Kudchadkar R, Rao NG, et al. Adjuvant immunotherapy and radiation in the management of high-risk resected melanoma. Ochsner J. 2010;10:108–116.
  • Sondak VK, Gonzalez RJ, Kudchadkar R. Adjuvant therapy for melanoma: a surgical perspective. Surg Oncol Clin N Am. 2011;20:105–114.
  • Spitler LE, Grossbard ML, Ernstoff MS, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. JCO. 2000;18:1614–1621.
  • McCormack DR, Bhattacharyya K, Kannan R, et al. Enhanced photoacoustic detection of melanoma cells using gold nanoparticles. Lasers Surg Med. 2011;43:333–338.
  • Chen C-C, Hsieh D-S, Huang K-J, et al. Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des Dev Ther. 2014;8:459.
  • Zhang X, Teodoro JG, Nadeau JL. Intratumoral gold-doxorubicin is effective in treating melanoma in mice. Nanomed: Nanotechnol Biol Med. 2015;11:1365–1375.
  • Tawagi E, Massmann C, Chibli H, et al. Differential toxicity of gold-doxorubicin in cancer cells vs. cardiomyocytes as measured by real-time growth assays and fluorescence lifetime imaging microscopy (FLIM). Analyst. 2015;140:5732–5741.
  • Li T, Zhang M, Wang J, et al. Thermosensitive hydrogel co-loaded with gold nanoparticles and doxorubicin for effective chemoradiotherapy. AAPS J. 2016;18:146–155.
  • Labala S, Mandapalli PK, Kurumaddali A, et al. Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm. 2015;12:878–888.
  • Choi BB, Kim MS, Song KW, et al. Targeting NEU protein in melanoma cells with non-thermal atmospheric pressure plasma and gold nanoparticles. J Biomed Nanotechnol. 2015;11:900–905.
  • Choi BBR, Choi JH, Hong JW, et al. Selective killing of melanoma cells with non-thermal atmospheric pressure plasma and p-FAK antibody conjugated gold nanoparticles. Int J Med Sci. 2017;14:1101.
  • Lloyd-Hughes H, Shiatis AE, Pabari A, et al. Current and future nanotechnology applications in the management of melanoma: a review. J Nanomed Nanotechnol. 2015;6:1.
  • Heidari M, Sattarahmady N, Azarpira N, et al. Photothermal cancer therapy by gold-ferrite nanocomposite and near-infrared laser in animal model. Lasers Med Sci. 2016;31:221–227.
  • Wang H, Zhao R, Li Y, et al. Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomed: Nanotechnol Biol Med. 2016;12:439–448.
  • Olson F, Hunt C, Szoka F, et al. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta (BBA)-Biomembr. 1979;557:9–23.
  • Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012;14:303–315.
  • Al‐Jamal WT, Al‐Jamal KT, Bomans PH, et al. Functionalized‐quantum‐dot–liposome hybrids as multimodal nanoparticles for cancer. Small. 2008;4:1406–1415.
  • Camerin M, Magaraggia M, Soncin M, et al. The in vivo efficacy of phthalocyanine?nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer. 2010;46:1910–1918.
  • Camerin M, Moreno M, Marín MJ, et al. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochem Photobiol Sci. 2016;15:618–625.
  • Labala S, Jose A, Venuganti VVK. Transcutaneous iontophoretic delivery of STAT3 siRNA using layer-by-layer chitosan coated gold nanoparticles to treat melanoma. Colloids Surf B: Biointerfaces. 2016;146:188–197.
  • Mohammadi Z, Sazgarnia A, Rajabi O, et al. Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line. Artif Cells Nanomed Biotechnol. 2017;45:467–473.
  • Mousavi M, Nedaei HA, Khoei S, et al. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons. Int J Radiat Biol. 2017;93:214–221.
  • Kim S-R, Kim E-H. Gold nanoparticles as dose-enhancement agent for kilovoltage X-ray therapy of melanoma. Int J Radiat Biol. 2017;93:517–526.
  • Labala S, Jose A, Chawla SR, et al. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int J Pharm. 2017;525:407–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.