1,474
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells

, , , , &
Pages 559-567 | Received 13 Oct 2017, Accepted 18 Jan 2018, Published online: 26 Jan 2018

References

  • Casagrande S, Tiribuzi R, Cassetti E, et al. Biodegradable composite porous poly(dl-lactide-co-glycolide) scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition. Artif Cells Nanomed Biotechnol. 2017;1–11. doi: https://doi.org/10.1080/21691401.2017.1417866 [Epub ahead of print]
  • Gong T, Xie J, Liao J, et al. Nanomaterials and bone regeneration. Bone Res. 2015;3:15029.
  • Oryan A, Alidadi S, Moshiri A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9:1.
  • Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998;16:247–252.
  • Senta H, Park H, Bergeron E, et al. Cell responses to bone morphogenetic proteins and peptides derived from them: biomedical applications and limitations. Cytokine Growth Factor Rev. 2009;20:213–222.
  • Barradas A, Yuan H, Blitterswijk CA, et al. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. ECM. 2011;21:407–429.
  • Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003;85:1544–1552.
  • Malafaya P, Silva G, Baran E, et al. Drug delivery therapies II: strategies for delivering bone regenerating factors. Curr Opin Solid State Mater Sci. 2002;6:297–312.
  • Wong DA, Kumar A, Jatana S, et al. Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J. 2008;8:1011–1018.
  • Zara JN, Siu RK, Zhang X, et al. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng. 2011;17:1389–1399.
  • Saito A, Suzuki Y, Ogata S-i, et al. Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta Protein Proteonomics. 2003;1651:60–67.
  • Harisa GI, Badran MM, Alanazi FK, et al. An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artif Cells Nanomed Biotechnol. 2017;1–11. doi: https://doi.org/10.1080/21691401.2017.1354301 [Epub ahead of print]
  • Niu X, Feng Q, Wang M, et al. Preparation and characterization of chitosan microspheres for controlled release of synthetic oligopeptide derived from BMP. J Microencapsul. 2009;26:297–305.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64:1020–1037.
  • Dasi F, Benet M, Crespo J, et al. A drug delivery system for the treatment of periodontitis. Drug Deliv. 2002;6:862–863.
  • Lohcharoenkal W, Wang L, Chen YC, et al. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. 2014;2014. doi:https://doi.org/10.1155/2014/180549
  • Orecchioni AM, Duclairoir C, Irache JM, et al. Plant protein‐based nanoparticles. New York: John Wiley & Sons; 2007; p. 54.
  • Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161:38–49.
  • Zein PA. Encyclopedia of polymer science and technology, vol. 15; 1971; p. 125–132.
  • Podaralla S, Perumal O. Preparation of Zein nanoparticles by pH controlled nanoprecipitation. J Biomed Nanotechnol. 2010;6:312–317.
  • Marini VG, Martelli SM, Zornio CF, et al. Biodegradable nanoparticles obtained from zein as a drug delivery system for terpinen-4-ol. Quím Nova. 2014;37:839–843.
  • Leo E, Scatturin A, Vighi E, et al. Polymeric nanoparticles as drug controlled release systems: a new formulation strategy for drugs with small or large molecular weight. J Nanosci Nanotechnol. 2006;6:3070–3079.
  • da Rosa CG, Maciel MVdOB, de Carvalho SM, et al. Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloid Surface Physicochem Eng Aspect. 2015;481:337–344.
  • Cabra V, Arreguin R, Vazquez-Duhalt R, et al. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein. Biochim Biophys Acta Protein Proteonomics. 2006;1764:1110–1118.
  • Zou T, Li Z, Percival SS, et al. Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food Hydrocolloids. 2012;27:293–300.
  • Aswathy RG, Sivakumar B, Brahatheeswaran D, et al. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv Nat Sci: Nanosci Nanotechnol. 2012;3:025006.
  • Coats A, Redfern J. Thermogravimetric analysis. A review. Analyst. 1963;88:906–924.
  • Sionkowska A, Skopinska-Wisniewska J, Gawron M, et al. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int J Biol Macromol. 2010;47:570–577.
  • Magoshi J, Nakamura S, Murakami KI. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J Appl Polym Sci. 1992;45:2043–2048.
  • Torres‐Giner S, Martinez‐Abad A, Lagaron JM. Zein‐based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. J Appl Polymer Sci. 2014;131:778–789.
  • Choi YJ, Lee JY, Chung CP, et al. The identification of a receptor-binding peptide derived from bone morphogenetic protein-6 and its role in osteogenesis. Biomater Res. 2014;5:19–24.
  • Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25:665–677.
  • Huang W, Yang S, Shao J, et al. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068.
  • Hu W, Ye Y, Wang J, et al. Bone morphogenetic proteins induce rabbit bone marrow-derived mesenchyme stem cells to differentiate into osteoblasts via BMP signals pathway. Artif Cells Nanomed Biotechnol. 2013;41:249–254.
  • Miron R, Zhang Y. Osteoinduction: a review of old concepts with new standards. J Dent Res. 2012;91:736–744.
  • Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:117.
  • Bruderer M, Richards R, Alini M, et al. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 2014;28:269–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.