2,116
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy

, , , , , ORCID Icon & show all
Pages 462-472 | Received 13 Nov 2017, Accepted 26 Mar 2018, Published online: 12 Apr 2018

References

  • Cukierman E, Khan DR. The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol. 2010;80:762–770.
  • Haghiralsadat F, Amoabediny G, Helder MN, et al. A comprehensive mathematical model of drug release kinetics from nanoliposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery. Artif Cells Nanomed Biotechnol. 2017;46:169–177.
  • Xu Y, Meng H. Paclitaxel-loaded stealth liposomes: development, characterization, pharmacokinetics, and biodistribution. Artif Cells Nanomed Biotechnol. 2016;44:350–355.
  • Staples BJ, Pitt WG, Roeder BL, et al. Distribution of doxorubicin in rats undergoing ultrasonic drug delivery. J Pharm Sci. 2010;99:3122–3131.
  • Kim D, Friedman D, Liu R. Tetraspecific ligand for tumor-targeted delivery of nanomaterials. Biomaterials. 2014;35:6026–6036.
  • Moussa HG, Martins AM, Husseini GA. Review on triggered liposomal drug delivery with a focus on ultrasound. Curr Cancer Drug Targets. 2015;15:282–313.
  • Connor J, Yatvin MB, Huang L. pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci USA. 1984;81:1715–1718.
  • Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–1201.
  • Ghadiali GE, Stevens MM. Enzyme-responsive nanoparticle systems. Adv Mater. 2008;20:4359–4363.
  • Gerasimov OV, Boomer JA, Qualls MM, et al. Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Deliv Rev. 1999;38:317–338.
  • Ahmed S, Moussa HG, Martins AM, et al. Effect of pH, ultrasound frequency and power density on the release of calcein from stealth liposomes. Eur J Nanomed. 2016;8:31–43.
  • Lasic D. Liposomes synthetic lipid microspheres serve as multipurpose vehicles for the delivery of drugs, genetic material and cosmetics. Am Sci. 1992;80:20–31.
  • Mishra GP, Bagui M, Tamboli V, et al. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:1–14.
  • Rai S, Paliwal R, Vaidya B, et al. Estrogen(s) and analogs as a non-immunogenic endogenous ligand in targeted drug/DNA delivery. Curr Med Chem. 2007;14:2095–2109.
  • Luconi M, Forti G, Baldi E. Genomic and nongenomic effects of estrogens: molecular mechanisms of action and clinical implications for male reproduction. J Steroid Biochem Mol Biol. 2002;80:369–381.
  • Björnström L, Sjöberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19:833–842.
  • Paliwal SR, Paliwal R, Mishra N, et al. A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy.Curr. Cancer Drug Targets. 2010;10:343–353.
  • Barnes RB, Levrant SG. Pharmacology of estrogens. In: Lobo, RA, editor. Treatment of the postmenopausal woman: basic and clinical aspects. 3rd ed. California: Elsevier; 2007. p. 767.
  • Berkson DL. Safe hormones smart women. New York: iUniverse, Inc.; 2010. p. 31.
  • Song Z, Lin Y, Zhang X, et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 2017;12:1941–1958.
  • Chang D-K, Li P-C, Lu R-M, et al. Peptide-mediated liposomal doxorubicin enhances drug delivery efficiency and therapeutic efficacy in animal models. PLoS One. 2013;8:e83239.
  • Li J-L, Wang L, Liu X-Y, et al. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009;274:319–326.
  • Wu J, Lu Y, Lee A, et al. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. J Pharm Pharm Sci. 2007;10:350–357.
  • Choi M, Shin DH, Kim J-S. Repositioning of zoledronic acid for breast cancer using transferrin-conjugated liposome. J Pharm Investig. 2013;43:461–469.
  • Reddy BS, Banerjee R. 17Beta-estradiol-associated stealth-liposomal delivery of anticancer gene to breast cancer cells. Angew Chem Int Ed Engl. 2005;44:6723–6727.
  • Jain AS, Goel PN, Shah SM, et al. Tamoxifen guided liposomes for targeting encapsulated anticancer agent to estrogen receptor positive breast cancer cells: in vitro and in vivo evaluation. Biomed Pharmacother. 2014;68:429–438.
  • Goren D, Horowitz AT, Tzemach D, et al. Nuclear delivery of doxorubicin via folate targeted-liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res. 2000;6:1949–1957.
  • Jiang J, Yang SJ, Wang JC, et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm. 2010;76:170–178.
  • Veneti E, Tu RS, Auguste DT. RGD-targeted liposome binding and uptake on breast cancer cells is dependent on elastin linker secondary structure. Bioconjugate Chem. 2016;27:1813–1821.
  • Hare JI, Moase EH, Allen TM. Targeting combinations of liposomal drugs to both tumor vasculature cells and tumor cells for the treatment of HER2-positive breast cancer. J Drug Targeting. 2013;21:87–96.
  • Shroff K, Kokkoli E. PEGylated liposomal doxorubicin targeted to α5β1-expressing MDA-MB-231 breast cancer cells. Langmuir. 2012;28:4729–4736.
  • Li H-F, Wu C, Xia M, et al. Targeted and controlled drug delivery using a temperature and ultra-violet responsive liposome with excellent breast cancer suppressing ability. RSC Adv. 2015;5:27630–27639.
  • Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 2001;61:2592–2601.
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Delivery Rev. 2008;60:1193–1208.
  • Afadzi M, Strand SP, Nilssen EA, et al. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:21–33.
  • Frenkel V, Etherington A, Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol. 2006;13:469–479.
  • Chandrapala J, Martin GJO, Zisu B, et al. The effect of ultrasound on casein micelle integrity. J Dairy Sci. 2012;95:6882–6890.
  • Evjen T. Sonosensitive liposomes for ultrasound-mediated drug delivery. Ph.D. [dissertation]. Norway: University of Tromsø; 2011.
  • Graham SM, Carlisle R, Choi JJ, et al. Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. J Controlled Release. 2014;178:101–107.
  • Husseini GA, Pitt WG. The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol. 2008;8: 2205–2215.
  • Husseini GA, Diaz de la Rosa MA, Richardson ES, et al. The role of cavitation in acoustically activated drug delivery. J Control Release. 2005;107:253–261.
  • Husseini GA, Myrup GD, Pitt WG, et al. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Controlled Release. 2000;69:43–52.
  • Husseini GA, Rapoport NY, Christensen DA, et al. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf B. 2002;24:253–264.
  • Khaibullina A, Jang BS, Sun H, et al. Pulsed high-intensity focused ultrasound enhances uptake of radiolabeled monoclonal antibody to human epidermoid tumor in nude mice. J Nucl Med. 2008;49:295–302.
  • Kost J, Leong K, Langer R. Ultrasonically controlled polymeric drug delivery. Makromol Chem Macromol Symp. 1988;19:275–285.
  • Rapoport N, Payne A, Dillon C, et al. Focused ultrasound-mediated drug delivery to pancreatic cancer in a mouse model. J Ther Ultrasound. 2013;1:1–11.
  • Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids. 2009;162:1–16.
  • Oerlemans C, Deckers R, Storm G, et al. Evidence for a new mechanism behind HIFU-triggered release from liposomes. J Control Release. 2013;168:327–333.
  • Kramer JF. Ultrasound: evaluation of its mechanical and thermal effects. Arch Phys Med Rehabil. 1984;65:223–227.
  • Schlicher RK, Radhakrishna H, Tolentino TP, et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol. 2006;32:915–924.
  • Blotny G. Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron. 2006;62:9507–9522.
  • Lasch J, Weissig V, Brandl M. Chapter 1: preparation of liposomes. In: Torchilin VP, Weissig V, editors. Liposomes: a practical approach. 2nd ed. Oxford: Oxford University Press; 2003. p. 3–15.
  • Cullis PR, Mayer LD, Bally MB, et al. Generating and loading of liposomal systems for drug-delivery applications. Adv Drug Delivery Rev. 1989;3:267–282.
  • Bhardwaj A, Kumar L, Narang RK, et al. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif Cells Nanomed Biotechnol. 2013;41:52–59.
  • Barenolz Y, Haran G, inventors; Yissum Research Development Co of Hebrew University, assignee. Method of amphiphatic drug loading in liposomes by pH gradient. U.S. Patent 5,192,549 A. 1993 March 9.
  • Stewart JC. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104:10–14.
  • Monteiro N, Martins A, Reis RL, et al. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11:1–24.
  • Schroeder A, Avnir Y, Weisman S, et al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir. 2007;23:4019–4025.
  • Richardson ES, Pitt WG, Woodbury DJ. The role of cavitation in liposome formation. Biophys J. 2007;93:4100–4107.
  • Pitt WG, Husseini GA, Kherbeck LN. Ultrasound-triggered release from micelles. In: Lorenzo C, Concheiro A, editors. Smart materials for drug delivery. Vol. 1. Cambridge: Royal Society of Chemistry; 2013. p. 148–178.
  • Marin A, Sun H, Husseini GA, et al. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Controlled Release. 2002;84:39–47.
  • Rapoport N. Ultrasound-mediated micellar drug delivery. Int J Hyperthermia. 2012;28:374–385.
  • Tanbour R, Martins AM, Pitt WG, et al. Drug delivery systems based on polymeric micelles and ultrasound: a review. Curr Pharm Des. 2016;22:2796–2807.
  • Martins AM, Tanbour R, Elkhodiry MA, et al. Ultrasound-induced doxorubicin release from folate-targeted and non-targeted P105 micelles: a modelling study. Eur J Nanomed. 2016;8:17–29.
  • Elkhodiry MA, Momah CC, Suwaidi SR, et al. Synergistic nanomedicine: passive, active, and ultrasound-triggered drug delivery in cancer treatment. J Nanosci Nanotechnol. 2016;16:1–18.
  • Martins AM, Ahmed S, Vitor RF, et al. Ultrasonic drug delivery using micelles and liposomes. In: Ashokkumar M, editor. Handbook of ultrasonics and sonochemistry. Singapore: Springer; 2016. p. 1–35.
  • Troxell EM, Troxell ML, Bell JD. The effect of estrone on the interaction between phospholipase A and the phospholipid bilayer. J Undergrad Res Brigham Young Univ. 2013.
  • Boyer TD, Zakim D, Vessey DA. Direct, rapid transfer of estrone from liposomes to microsomes. J Biol Chem. 1980;255:627–631.
  • Biltonen RL, Lichtenberg D. The use of differential scanning calorimetry as a tool to characterize liposome preparation. Chem Phys Lipids. 1993;64:129–142.
  • Kastantin M, Ananthanarayanan B, Karmali P, et al. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir. 2009;25:7279–7286.
  • Lee HR, Hwang KA, Park MA, et al. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int J Mol Med. 2012;29:883–890.
  • DeSantis C, Siegel R, Bandi P, et al. Breast cancer statistics, 2011. CA Cancer J Clin. 2011;61:409–418.
  • Sumida C, Magdelenat H, Pasqualini JR. Cytosol and nuclear estrogen receptors (occupied and unoccupied sites) and progesterone receptors in human breast cancer. Breast Cancer Res Treat. 1985;5:165–169.
  • Beato M, Herrlich P, Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995;83:851–857.
  • Tsai MJ, O’Malley BW. Molecular mechanism of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486.
  • Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab. 2009;20:477–482.
  • Song RX, Santen RJ. Membrane initiated estrogen signaling in breast cancer. Biol Reprod. 2006;75:9–16.
  • Rai S, Paliwal R, Vaidya B, et al. Targeted delivery of doxorubicin via estrone-appended liposomes. J Drug Targeting. 2008;16:455–463.
  • Tachibana K, Uchida T, Ogawa K, et al. Induction of cell-membrane porosity by ultrasound. Lancet. 1999;353:1409
  • Lentacker ID, Cock I, Deckers RD, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Delivery Rev. 2014;72:49–64.
  • Jelenc J, Miklavcic D, Lebar AM. Low-Frequency Ultrasound in vitro: changes of cell morphology. LAHA. 2013;2013:58–60.
  • Fan Z, Liu H, Mayer M, et al. Spatiotemporally controlled single cell sonoporation. Proc Natl Acad Sci USA. 2012;109:16486–16491.
  • Fan Z, Kumon RE, Park J, et al. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Controlled Release. 2010;142:31–39.
  • Liu J, Lewis TN, Prausnitz MR. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res. 1998;15:918–924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.