2,053
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

A novel strategy for in vivo angiogenesis and osteogenesis: magnetic micro-movement in a bone scaffold

, , , , , , , , , , , , , , & show all
Pages 636-645 | Received 27 Jan 2018, Accepted 12 Apr 2018, Published online: 22 Jul 2018

References

  • Xu XL, Qiu SJ, Zhang YX, et al. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation. Artif Cells Nanomed Biotechnol. 2017;45(2):330–339.
  • Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions – a 21st century perspective. Bone Res. 2013;1:216–248.
  • Gross TP, Cox QG, Jinnah RH. History and current application of bone transplantation. Orthopedics. 1993;16:895–900.
  • Kirkeby OJ, Nordsletten L, Skjeldal S, et al. Circulation in corticocancellous bone grafts measured with laser Doppler flowmetry. An experimental study in rats. Scand J Plast Reconstr Surg Hand Surg. 1994;28:249–254.
  • Cassell OC, Hofer SO, Morrison WA, et al. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 2002;55:603–610.
  • Garcia JR, Clark AY, Garcia AJ. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A. 2016;104:1845.
  • Safavi-Abbasi S, Komune N, Archer J, et al. Surgical anatomy and utility of pedicled vascularized tissue flaps for multilayered repair of skull base defects. J Neurosurg. 2016;125:419–430.
  • Barabaschi GD, Manoharan V, Li Q, et al. Engineering pre-vascularized scaffolds for bone regeneration. Adv Exp Med Biol. 2015;881:79–94.
  • Perez RA, Kim JH, Buitrago JO, et al. Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater. 2015;23:295–308.
  • Lim SS, Kook SH, Bhattarai G, et al. Local delivery of COMP-angiopoietin 1 accelerates new bone formation in rat calvarial defects. J Biomed Mater Res A. 2015;103:2942–2951.
  • Zhang W, Chang Q, Xu L, et al. Graphene oxide-copper nanocomposite-coated porous CaP scaffold for vascularized bone regeneration via activation of Hif-1alpha. Adv Healthc Mater. 2016;5:1299–1309.
  • Almubarak S, Nethercott H, Freeberg M, et al. Tissue engineering strategies for promoting vascularized bone regeneration. Bone. 2016;83:197–209.
  • Sun X, Kang Y, Bao J, et al. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials. 2013;34:4971–4981.
  • Chow DC, Wenning LA, Miller WM, et al. Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's Model. Biophys J. 2001;81:675–684.
  • Vlad M, Andronescu E, Grumezescu AM, et al. Carboxymethyl-cellulose/Fe3o4 nanostructures for antimicrobial substances delivery. Bio-Med Mater Eng. 2014;24:1639–1646.
  • Alves NM, Mano JF. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol. 2008;43:401–414.
  • Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials. 2009;30:508–517.
  • Mura S. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991.
  • Casettari L, Vllasaliu D, Lam JK, et al. Biomedical applications of amino acid-modified chitosans: a review. Biomaterials. 2012;33:7565–7583.
  • Benyettou F, Lalatonne Y, Sainte-Catherine O, et al. Superparamagnetic nanovector with anti-cancer properties: gamma Fe2O3@Zoledronate. Int J Pharm. 2009;379:324–327.
  • Shapiro B. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater. 2009;321:1594–1594.
  • Namiki Y, Namiki T, Yoshida H, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechol. 2009;4:598–606.
  • Ghosh D, Lee Y, Thomas S, et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol. 2012;7:677–682.
  • Chao SC, Wang MJ, Pai NS, et al. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair. Mater Sci Eng C Mater Biol Appl. 2015;57:113–122.
  • Sima M, Fatemeh ZS, Samad MF, et al. Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(2):722–734.
  • Guo L, Liu G, Hong RY, et al. Preparation and characterization of chitosan poly(acrylic acid) magnetic microspheres. Mar Drugs. 2010;8:2212–2222.
  • Dratviman-Storobinsky O, Lubin BCRA, Hasanreisoglu M, et al. Effect of subconjuctival and intraocular bevacizumab injection on angiogenic gene expression levels in a mouse model of corneal neovascularization. Mol Vis. 2009;15:2326–2338.
  • Heiss M, Hellstrom M, Kalén M, et al. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 2015;29:3076–3084.
  • Finotelli PV, et al. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B Biointerfaces. 2010;81:206–211.
  • Engebrecht J, Heilig JS, Brent R. Preparation of bacterial plasmid DNA. Curr Protoc Neurosci. 2001;Appendix 1:A.1J.1–A.1J.10.
  • Itou A, Azuma H, Isono M, et al. Comparison of measuring an area with a planimeter and by rectangular dimensional methods. Nihon Jibiinkoka Gakkai Kaiho. 1996;99:926–933.
  • He X, Dziak R, Yuan X, et al. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. PLoS One. 2013;8:e60473.
  • Berggren KL, Kay JJ, Swain RA. Examining cerebral angiogenesis in response to physical exercise. Methods Mol Biol. 2014;1135:139–154.
  • Fatemeh ZS, Sima M, Nasrin N, et al. Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artificial Cells, Nanomedicines, and Biotechnology. 2016;44(3):918.
  • Meng J, Xiao B, Zhang Y, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep. 2013;3:2655.