8,578
Views
81
CrossRef citations to date
0
Altmetric
Review

Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles

Pages 1091-1107 | Received 12 Feb 2018, Accepted 15 May 2018, Published online: 29 Jun 2018

References

  • Schuster D, Laggner C, Langer T. Why drugs fail – a study on side effects in new chemical entities. Curr Pharm Des. 2005;11:3545–3559.
  • European Commission. Ban on Animal Testing: European Commission; 2017 [cited 2017 August, 12]. Available from: https://ec.europa.eu/growth/sectors/cosmetics/animal-testing_de
  • Levine RR, McNary WF, Kornguth PJ, et al. Histological reevaluation of everted gut technique for studying intestinal absorption. Eur J Pharmacol. 1970;9:211–219.
  • Greaves P. Hemopoietic and lymphatic systems In: Greaves P, editor. Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation. Amsterdam: Elsevier; 2012. p. 99–156.
  • Bregoli L, Chiarini F, Gambarelli A, et al. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology 2009;262:121–129.
  • Fröhlich E. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo. Int J Nanomedicine. 2015;10:3761–3778.
  • Kim MY, Li DJ, Pham LK, et al. Microfabrication of high-resolution porous membranes for cell culture. J Memb Sci. 2014;452:460–469.
  • Geys J, Coenegrachts L, Vercammen J, et al. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett. 2006;160:218–226.
  • Dekali S, Gamez C, Kortulewski T, et al. Assessment of an in vitro model of pulmonary barrier to study the translocation of nanoparticles. Toxicol Reports. 2014;1:157–171.
  • Fröhlich E. Hemocompatibility of inhaled environmental nanoparticles: potential use of in vitro testing. J Hazard Mater. 2017;336:158–167.
  • Konishi S, Fujita F, Hattori K, et al. An openable artificial intestinal tract system for the in vitro evaluation of medicines. Microsyst Nanoeng. 2015;1:15015.
  • Kim HJ, Huh D, Hamilton G, et al. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–2174.
  • Kim HJ, Ingber DE. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 2013;5:1130–1140.
  • Navabi N, McGuckin MA, Linden SK. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation. PLoS One. 2013;8:e68761.
  • Bourgine J, Billaut-Laden I, Happillon M, et al. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: comparison between human intestinal biopsy samples and colon cell lines. Drug Metab Dispos. 2012;40:694–705.
  • Lasa-Saracibar B, Guada M, Sebastian V, et al. In vitro intestinal co-culture cell model to evaluate intestinal absorption of edelfosine lipid nanoparticles. CTMC. 2014;14:1124–1132.
  • Antunes F, Andrade F, Araujo F, et al. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 2013;83:427–435.
  • Mahler GJ, Esch MB, Tako E, et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol. 2012;7:264–271.
  • Schimpel C, Teubl B, Absenger M, et al. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol Pharmaceutics. 2014;11:808–818.
  • Viney ME, Bullock AJ, Day MJ, et al. Co-culture of intestinal epithelial and stromal cells in 3D collagen-based environments. Regen Med. 2009;4:397–406.
  • Li N, Wang D, Sui Z, et al. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C Methods. 2013;19:708–719.
  • Trapecar M, Goropevsek A, Gorenjak M, et al. A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 translocation. PLoS One. 2014;9:e86297.
  • Haller D, Bode C, Hammes WP, et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 2000;47:79–87.
  • Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2:361–367.
  • Rimoldi M, Chieppa M, Larghi P, et al. Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 2005;106:2818–2826.
  • Ramadan Q, Jafarpoorchekab H, Huang C, et al. NutriChip: nutrition analysis meets microfluidics. Lab on a Chip. 2013;13:196.
  • Leonard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol Pharmaceutics. 2010;7:2103–2119.
  • Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem. 2009;20:494–502.
  • Vazquez M, Calatayud M, Velez D, et al. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells. Toxicology 2013;311:147–153.
  • Esch MB, Mahler GJ, Stokol T, et al. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab on a Chip. 2014;14:3081–3092.
  • ICRP H. Respiratory tract model for radiological protection. Ann Icrp. 1994;24:1–3.
  • Rothen-Rutishauser B, Clift M, Jud C, et al. Human epithelial cells in vitro – are they an advantageous tool to help understand the nanomaterial-biological barrier interaction?. EURO-NanoTox Lett. 2012;4:1–19.
  • Nguyen Hoang AT, Chen P, Juarez J, et al. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302:L226–L237.
  • Stoehr LC, Gonzalez E, Stampfl A, et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8:36.
  • Kuehn A, Kletting S, de Souza Carvalho-Wodarz C, et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. Altex 2016;33:251–260.
  • Meindl C, Öhlinger K, Ober J, et al. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology 2017;378:25–36.
  • Rothen-Rutishauser BM, Kiama SG, Gehr P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 2005;32:281–289.
  • Herzog F, Clift MJ, Piccapietra F, et al. Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol. 2013;10:11
  • Alfaro-Moreno E, Nawrot TS, Vanaudenaerde BM, et al. Co-cultures of multiple cell types mimic pulmonary cell communication in response to urban PM10. Eur Respir J. 2008;32:1184–1194.
  • Klein SG, Serchi T, Hoffmann L, et al. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol. 2013;10:31.
  • Nalayanda DD, Puleo C, Fulton WB, et al. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomed Microdevices. 2009;11:1081–1089.
  • Shav D, Gotlieb R, Zaretsky U, et al. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall. PLoS One. 2014;9:e88304.
  • Bouis D, Hospers GA, Meijer C, et al. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis. 2001;4:91–102.
  • Sharma HS, Ali SF, Hussain SM, et al. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. 2009;9:5055–5072.
  • Bachmann A, Moll M, Gottwald E, et al. 3D cultivation techniques for primary human hepatocytes. Microarrays (Basel). 2015;4:64–83.
  • Kang YB, Rawat S, Cirillo J, et al. Layered long-term co-culture of hepatocytes and endothelial cells on a transwell membrane: toward engineering the liver sinusoid. Biofabrication 2013;5:045008.
  • van Grunsven LA. 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017;121:133–146.
  • Wong SF, No da Y, Choi YY, et al. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials 2011;32:8087–8096.
  • Donato MT, Tolosa L, Gomez LMJ. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol. 2015;1250:77–93.
  • Gripon P, Rumin S, Urban S, et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA. 2002;99:15655–15660.
  • Leite SB, Wilk-Zasadna I, Zaldivar JM, et al. Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicol Sci. 2012;130:106–116.
  • Luckert C, Schulz C, Lehmann N, et al. Comparative analysis of 3D culture methods on human HepG2 cells. Arch Toxicol. 2016;91:393–406.
  • Fröhlich E, Kueznik T, Samberger C, et al. Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol. 2010;242:326–332.
  • Lamb JG, Hathaway LB, Munger MA, et al. Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos. 2010;38:2246–2251.
  • El-Sayed R, Bhattacharya K, Gu Z, et al. Single-walled carbon nanotubes inhibit the cytochrome P450 enzyme, CYP3A4. Sci Rep. 2016;6:21316
  • Munger MA, Hadlock G, Stoddard G, et al. Assessing orally bioavailable commercial silver nanoparticle product on human cytochrome P450 enzyme activity. Nanotoxicology 2015;9:474–481.
  • Iavicoli I, Fontana L, Nordberg G. The effects of nanoparticles on the renal system. Crit Rev Toxicol. 2016;46:490–560.
  • Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5:1119–1129.
  • Li Y, Zheng Y, Zhang K, et al. Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generated in vitro. Nanotoxicology 2012;6:121–133.
  • Huber JM, Amann A, Koeck S, et al. Evaluation of assays for drug efficacy in a three-dimensional model of the lung. J Cancer Res Clin Oncol. 2016;142:1955–1966.
  • Adcock A, Trivedi G, Edmondson R, et al. Three-dimensional (3D) cell cultures in cell-based assays for in-vitro evaluation of anticancer drugs. J Anal Bioanal Tech. 2015;6:247.
  • Movia D, Prina-Mello A, Bazou D, et al. Screening the cytotoxicity of single-walled carbon nanotubes using novel 3D tissue-mimetic models. ACS Nano. 2011;5:9278–9290.
  • Mrakovcic M, Absenger M, Riedl R, et al. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system. PLoS One. 2013;8:e56791
  • Luo Y, Wang C, Hossain M, et al. Three-dimensional microtissue assay for high-throughput cytotoxicity of nanoparticles. Anal Chem. 2012;84:6731–6738.
  • Lee J, Lilly GD, Doty RC, et al. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009;5:1213–1221.
  • Sambale F, Lavrentieva A, Stahl F, et al. Three dimensional spheroid cell culture for nanoparticle safety testing. J Biotechnol. 2015;205:120–129.
  • Wills JW, Hondow N, Thomas AD, et al. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™)). Part Fibre Toxicol. 2016;13:50
  • Wu Z, Guan R, Tao M, et al. Assessment of the toxicity and inflammatory effects of different-sized zinc oxide nanoparticles in 2D and 3D cell cultures. RSC Adv. 2017;7:12437–12445.
  • Yu M, Huang S, Yu KJ, et al. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. IJMS. 2012;13:5554–5570.
  • Kuhn S, Hallahan D, Giorgio T. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system. Ann Biomed Eng. 2006;34:51–58.
  • Ng CP, Pun SH. A perfusable 3D cell-matrix tissue culture chamber for in situ evaluation of nanoparticle vehicle penetration and transport. Biotechnol Bioeng. 2008;99:1490–1501.
  • Soma CE, Dubernet C, Barratt G, et al. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. J Control Release. 2000;68:283–289.
  • Al-Hallak KM, Azarmi S, Anwar-Mohamed A, et al. Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur J Pharm Biopharm. 2010;76:112–119.
  • Kim K, Kim S, Chun B, et al. Apoptotic damage during co-culture of lung epithelial cells and macrophages in the presence of metal nanoparticles is modulated by TNF-α from macrophages. J Korean Soc Appl Biol Chem. 2011;54:30–36.
  • Kasper J, Hermanns MI, Bantz C, et al. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol. 2011;8:6.
  • Bengalli R, Mantecca P, Camatini M, et al. Effect of nanoparticles and environmental particles on a cocultures model of the air-blood barrier. Biomed Res Int. 2013;2013:801214
  • Bengalli R, Gualtieri M, Capasso L, et al. Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicol Lett. 2017;279:22–32.
  • Georgantzopoulou A, Serchi T, Cambier S, et al. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 2015;13:9.
  • Freese C, Schreiner D, Anspach L, et al. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Part Fibre Toxicol. 2014;11:68.
  • Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv and Transl Res. 2013;3:409–415.
  • Mercuri A, Wu S, Stranzinger S, et al. In vitro and in silico characterisation of tacrolimus released under biorelevant conditions. Int J Pharm. 2016;515:271–280.
  • Westerhout J, van de Steeg E, Grossouw D, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–177.
  • Walczak AP, Kramer E, Hendriksen PJ, et al. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology 2015;9:886–894.
  • Blank F, Rothen-Rutishauser BM, Schurch S, et al. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med. 2006;19:392–405.
  • Fröhlich E, Bonstingl G, Hofler A, et al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol in Vitro. 2013;27:409–417.
  • Frijns E, Verstraelen S, Stoehr LC, et al. A novel exposure system termed NAVETTA for in vitro laminar flow electrodeposition of nanoaerosol and evaluation of immune effects in human lung reporter cells. Environ Sci Technol. 2017;51:5259–5269.
  • Meindl C, Stranzinger S, Dzidic N, et al. Permeation of therapeutic drugs in different formulations across the airway epithelium in vitro. PLoS One. 2015;10:e0135690
  • Fröhlich E, Meindl C. In vitro assessment of chronic nanoparticle effects on respiratory cells. In: Soloneski S, Larramendy M, editors. Nanomaterials – toxicity and risk assessment. Rijeka: InTech; 2015. p. 69–91.
  • Herzog F, Loza K, Balog S, et al. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein J Nanotechnol. 2014;5:1357–1370.
  • Lenz AG, Stoeger T, Cei D, et al. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air-liquid interface conditions. Am J Respir Cell Mol Biol. 2014;51:526–535.
  • Lenz AG, Karg E, Lentner B, et al. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 2009;6:32
  • Toy R, Hayden E, Shoup C, et al. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 2011;22:115101
  • Shin H, Zhang X, Makino A, et al. Mechanobiological evidence for control of neutrophil activity by fluid shear stress In: Nagatomi J, editor. Mechanobiology handbook. Section II (Part 1) Literature review of mechanobiology. Research findings and theories: cardiovascular systems. Boca Raton: CRC Press; 2011. p. 139–178.
  • Rinkenauer AC, Press AT, Raasch M, et al. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo. J Control Release. 2015;216:158–168.
  • Fede C, Fortunati I, Weber V, et al. Evaluation of gold nanoparticles toxicity towards human endothelial cells under static and flow conditions. Microvasc Res. 2015;97:147–155.
  • Samuel SP, Jain N, O'Dowd F, et al. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int J Nanomedicine 2012;7:2943–2956.
  • Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. JCB. 2016;1:191–208.
  • Matuszak J, Baumgartner J, Zaloga J, et al. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing. Nanomedicine 2016;11:597–616.
  • Prietl B, Meindl C, Roblegg E, et al. Nano-sized and micro-sized polystyrene particles affect phagocyte function. Cell Biol Toxicol. 2014;30:1–16.
  • Wolfram J, Yang Y, Shen J, et al. The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces. 2014;124:17–24.
  • Riebeling C, Jungnickel H, Luch A, et al. Systems biology to support nanomaterial grouping. In: Tran L, Banares MA, Rallo R, editors. Modelling the toxicity of nanoparticles. Cham: Springer International Publishing; 2017. p. 143–172.
  • Oberdorster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8.
  • Powers KW, Brown SC, Krishna VB, et al. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci. 2006;90:296–303.
  • OECD Environment, Health and Safety Publications, Series on the Safety of Manufactured Nanomaterials. Physical-chemical properties of nanomaterials: evaluation of methods applied in the OECD-WPMN testing programme, ENV/JM/MONO(2016)7 (2016).
  • Ha MK, Trinh TX, Choi JS, et al. Toxicity classification of oxide nanomaterials: effects of data gap filling and PChem score-based screening approaches. Sci Rep. 2018;8:3141.
  • Oksel C, Ma CY, Wang XZ. Current situation on the availability of nanostructure-biological activity data. SAR QSAR Environ Res. 2015;26:79–94.
  • Wang XZ, Yang Y, Li R, et al. Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles. Nanotoxicology 2014;8:465–476.
  • Liu R, Zhang HY, Ji ZX, et al. Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale 2013;5:5644–5653.
  • Liu R, Rallo R, Weissleder R, et al. Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries. Small 2013;9:1842–1852.
  • Singh K, Gupta S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Adv. 2014; 4:13215–13230.
  • Gajewicz A, Schaeublin N, Rasulev B, et al. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 2015;9:313–325.
  • Shaw SY, Westly EC, Pittet MJ, et al. Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci USA. 2008;105:7387–7392.
  • Sayes C, Ivanov I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal. 2010;30:1723–1734.
  • Mikolajczyk A, Sizochenko N, Mulkiewicz E, et al. Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach. Beilstein J Nanotechnol. 2017;8:2171–2180.
  • Liu R, Rallo R, George S, et al. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 2011;7:1118–1126.
  • Zhang H, Ji Z, Xia T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012;6:4349–4368.
  • Luan F, Kleandrova VV, Gonzalez DH, et al. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 2014;6:10623–10630.
  • Kar S, Gajewicz A, Roy K, et al. Extrapolating between toxicity endpoints of metal oxide nanoparticles: predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicol Environ Saf. 2016;126:238–244.
  • Burello E, Worth AP. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 2011;5:228–235.
  • Oh E, Liu R, Nel A, et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat Nanotechnol. 2016;11:479–486.
  • Toropov AA, Toropova AP. Optimal descriptor as a translator of eclectic data into endpoint prediction: mutagenicity of fullerene as a mathematical function of conditions. Chemosphere 2014;104:262–264.
  • Zhou H, Mu Q, Gao N, et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett. 2008;8:859–865.