4,403
Views
27
CrossRef citations to date
0
Altmetric
Review

Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches

, &
Pages 611-620 | Received 17 Apr 2018, Accepted 21 Jul 2018, Published online: 16 Nov 2018

References

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33:1582–1614.
  • Dias PC, Foglio MA, Possenti A, et al. Antiulcerogenic activity of crude ethanol extract and some fractions obtained from aerial parts of Artemisia annua L. Phytother Res. 2001;15:670–675.
  • Foglio MA, Dias PC, Antônio MA, et al. Antiulcerogenic activity of some sesquiterpene lactones isolated from Artemisia annua. Planta Med. 2002;68:515–518.
  • Favero F. d F, Grando R, Nonato FR, et al. Artemisia annua L.: evidence of sesquiterpene lactones’ fraction antinociceptive activity. BMC Complement Altern Med. 2014;14:266.
  • Santomauro F, Donato R, Sacco C, et al. Vapour and liquid-phase Artemisia annua essential oil activities against several clinical strains of candida. Planta Med. 2016;82:1016–1020.
  • Tajehmiri A, Issapour F, Moslem MN, et al. In vitro antimicrobial activity of Artemisia annua leaf extracts against pathogenic bacteria – semantic scholar. ASB 2014;6:93–97.
  • Lubbe A, Seibert I, Klimkait T, et al. Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. J Ethnopharmacol. 2012;141:854–859.
  • Humphreys C, Cooper AJ, Barbu E, et al. Artemisinins as potential anticancer agents: uptake detection in erythrocytes using Fourier transform infrared spectroscopy and cytotoxicity against bladder cancer cells. J Clin Pathol. 2016;69:962–967.
  • Li J, Casteels T, Frogne T, et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 2017;168:86–100.e15.
  • Titulaer HAC, Zuidema J, Lugt CB. Formulation and pharmacokinetics of artemisinin and its derivatives. Int J Pharm. 1991;69:83–92.
  • Aderibigbe BA. Design of drug delivery systems containing artemisinin and its derivatives. Molecules. 2017;22:323.
  • Hou L, Huang H. Immune suppressive properties of artemisinin family drugs. Pharmacol Ther. 2016;166:123–127.
  • Shakir L, Hussain M, Javeed A, et al. Artemisinins and immune system. Eur J Pharmacol. 2011;668:6–14.
  • Shi C, Li H, Yang Y, et al. Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediators Inflamm. 2015;2015:(Article ID 435713):435713–435717.
  • Vivek R, Rejeeth C, Thangam R. Targeted nanotherapeutics based on cancer biomarkers. In: Grumezescu AM, organizador. Multifunctional systems for combined delivery, biosensing and diagnostics [Internet]. Elsevier; 2017 [citado 11 de abril de 2018]. p. 229–44. Disponível em: https://doi.org/10.1016/B978-0-323-52725-5.00012-5
  • Kapadia CH, Perry JL, Tian S, et al. Nanoparticulate immunotherapy for cancer. J Control Release. 2015;219:167–180.
  • Estanqueiro M, Amaral MH, Conceição J, et al. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B. 2015;126:631–648.
  • Thipparaboina R, Chavan RB, Kumar D, et al. Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf B. 2015;135:291–308.
  • Jabbarzadegan M, Rajayi H, Mofazzal Jahromi MA, et al. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model. Artif Cells Nanomedicine Biotechnol. 2017;45:808–816.
  • Manjili HK, Malvandi H, Mousavi MS, et al. In vitro and in vivo delivery of artemisinin loaded PCL-PEG-PCL micelles and its pharmacokinetic study. Artif Cells Nanomedicine Biotechnol. 2018;46:926–936.
  • Ramazani A, Keramati M, Malvandi H, et al. Preparation and in vivo evaluation of anti-plasmodial properties of artemisinin-loaded PCL-PEG-PCL nanoparticles. Pharm Dev Technol. 2017;1–10.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–578.
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2015;93:52–79.
  • Tran TH, Nguyen TD, Poudel BK, et al. Development and evaluation of artesunate-loaded chitosan-coated lipid nanocapsule as a potential drug delivery system against breast cancer. AAPS PharmSciTech. 2015;16:1307–1316.
  • Natesan S, Ponnusamy C, Sugumaran A, et al. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int J Biol Macromol. novembro De. 2017;104:1853–1859.
  • Want MY, Islamuddin M, Chouhan G, et al. A new approach for the delivery of artemisinin: formulation, characterization, and ex-vivo antileishmanial studies. J Colloid Interface Sci. 2014;432:258–269.
  • Want MY, Islamuddin M, Chouhan G, et al. Therapeutic efficacy of artemisinin-loaded nanoparticles in experimental visceral leishmaniasis. Colloids Surf B. 2015;130:215–221.
  • Wang L, Wang Y, Wang X, et al. Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity. J Microencapsul. 2016;33:43–52.
  • Tran TH, Nguyen TD, Van Nguyen H, et al. Targeted and controlled drug delivery system loading artersunate for effective chemotherapy on CD44 overexpressing cancer cells. Arch Pharm Res. 2016;39:687–694.
  • Ibrahim N, Ibrahim H, Sabater AM, et al. Artemisinin nanoformulation suitable for intravenous injection: preparation, characterization and antimalarial activities. Int J Pharm. 2015;495:671–679.
  • Liu R, Yu X, Su C, et al. Nanoparticle delivery of artesunate enhances the anti-tumor efficiency by activating mitochondria-mediated cell apoptosis. Nanoscale Res Lett. 2017;12:403.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–313.
  • Manaia EB, Abuçafy MP, Chiari-Andréo BG, et al. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine. 2017;12:4991–5011.
  • Righeschi C, Coronnello M, Mastrantoni A, et al. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: development, characterization and in vitro studies of liposomal formulations. Colloids Surf B. 2014;116:121–127.
  • Chen H-J, Huang X-R, Zhou X-B, et al. Potential sonodynamic anticancer activities of artemether and liposome-encapsulated artemether. Chem Commun. 2015;51:4681–4684.
  • Want MY, Islammudin M, Chouhan G, et al. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. Int J Nanomedicine. 2017;12:2189–2204.
  • Leto I, Coronnello M, Righeschi C, et al. Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. Chem Med. 2016;11:1745–1751.
  • Kang X-J, Wang H-Y, Peng H-G, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38:885–896.
  • Jain P, Rahi P, Pandey V, et al. Nanostructure lipid carriers: a modish contrivance to overcome the ultraviolet effects. Egypt J Basic Appl Sci. 2017;4:89–100.
  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine Nanotechnol Biol Med. 2016;12:143–161.
  • Dwivedi P, Khatik R, Khandelwal K, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm. 2014;466:321–327.
  • Omwoyo WN, Melariri P, Gathirwa JW, et al. Development, characterization and antimalarial efficacy of dihydroartemisinin loaded solid lipid nanoparticles. Nanomedicine Nanotechnol Biol Med. 2016;12:801–809.
  • Parashar D, Aditya NP, Murthy RSR. Development of artemether and lumefantrine co-loaded nanostructured lipid carriers: physicochemical characterization and in vivo antimalarial activity. Drug Deliv. 2016;23:123–129.
  • Prabhu P, Suryavanshi S, Pathak S, et al. Nanostructured lipid carriers of artemether-lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm. 2016;513:504–517.
  • Cancino J, Marangoni VS, Zucolotto V. Nanotechnology in medicine: concepts and concerns. Quím Nova. 2014;37:521–526.
  • Kushwaha SKS, Ghoshal S, Rai AK, et al. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013;49:629–643.
  • Montellano A, Da Ros T, Bianco A, et al. Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale. 2011;3:4035–4041.
  • Zhang H, Ji Y, Chen Q, et al. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J Drug Target. 2015;23:552–567.
  • Zhang H, Hou L, Jiao X, et al. Transferrin-mediated fullerenes nanoparticles as Fe(2+)-dependent drug vehicles for synergistic anti-tumor efficacy. Biomaterials. 2015;37:353–366.
  • Liu L, Wei Y, Zhai S, et al. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials. 2015;62:35–46.
  • Wahajuddin null, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–3471.
  • Mohammed L, Gomaa HG, Ragab D, et al. Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology. 2017;30:1–14.
  • Chen J, Guo Z, Wang H-B, et al. Multifunctional mesoporous nanoparticles as pH-responsive Fe2+ reservoirs and artemisinin vehicles for synergistic inhibition of tumor growth. Biomaterials. 2014;35:6498–6507.
  • Chen J, Zhang W, Zhang M, et al. Mn(II) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo. Nanoscale. 2015;7:12542–12551.
  • Zhang H, Zhang H, Zhu X, et al. Visible-light-sensitive titanium dioxide nanoplatform for tumor-responsive Fe2+ liberating and artemisinin delivery. Oncotarget. 2017;8:58738–58753.
  • Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V, 2016. Nanostructured lipid carriers of artemether-lumefantrine combination for intravenous therapy of cerebral malaria. Int. J. Pharm. 513;504–517. https://doi.org/10.1016/j.ijpharm.2016.09.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.