2,706
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Design and synthesis of mucoadhesive nanogel containing farnesol: investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro

, , , &
Pages 64-72 | Received 19 Aug 2018, Accepted 23 Oct 2018, Published online: 19 Jan 2019

References

  • Vandeput P, Selene F, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;26:Article ID 713687, 26 pages. http://dx.doi.org/10.1155/2012/713687.
  • Hill JA, Ammar R, Torti D, et al. Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLOS Genet. 2013;9:e1003390.
  • Perea S, Lopez-Ribot JL, Kirkpatrick WR. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45:2676.
  • Zhang H, Zhai Y, Wang J, et al. New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl. 2016;60:560–568.
  • Tiwari BK, Valdramidis VP, O'Donnell CP, et al. Application of natural antimicrobials for food preservation. J Agric Food Chem. 2009;57:5987–6000.
  • Adorjan B, Buchbauer G. Biological properties of essential oils: an updated review. Flavour Fragr J. 2010;25:407–426.
  • Ramage G, Saville SP, Wickes BL, et al. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68:5459–5463.
  • Joo JH, Jetten AM. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010;287:123–135.
  • Kromidas L, Perrier E, Flanagan J, et al. Release of antimicrobial actives from microcapsules by the action of axillary bacteria. Int J Cosmet Sci. 2006;28:103–108.
  • Saville SP, Lazzell AL, Bryant AP, et al. Inhibition of filamentation can be used to treat disseminated candidiasis. Antimicrob Agents Chemother. 2006;50:3312–3316.
  • Shareck J, Belhumeur P. Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryotic Cell. 2011;10:1004–1012.
  • Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother. 2003;47:2366–2369.
  • Lu Y, Su C, Unoje O, et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1 –mediated protein degradation. Proc Natl Acad Sci USA. 2014;111:1975–1980.
  • Mark E, Shirtliff BPK, Roelien AM, et al. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53(6):2392–2401.
  • Wachtler BWD, Haedicke K, Dalle F, et al. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One. 2011;6:e17046.
  • Nobile CJNS, Myers CL, Fay AJ, et al. Candida albicans transcription Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol. 2008;10:2180–2196.
  • Jacobsen ID, Wilson D, Wächtler B, et al. Candida albicans dimorphism as a therapeutic target. Expert Rev anti Infect. 2012;10:85–93.
  • Fateme N, Shahla R, Bahareh B, et al. Effect of farnesol on responsive gene expressions in hyphal morphogenesis transformation of Candida albicans. Infect Epedemiol Microbiol. 2018;4:73–77.
  • Bilia AR, Guccione B, Isachi C, et al. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. 2014. Article ID 651593, 14 pages. DOI:10.1155/2014/651593.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60:1650–1662.
  • Liew CV, Chan LW, Ching AL, et al. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309:25–37.
  • Rampino A, Borgogna M, Blasi P, et al. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455:219–228.
  • Chen X-G, Lee CM, Park H-J. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system. J Agric Food Chem. 2003;51:3135–3139.
  • Ziaee M, Moharramipour S, Mohsenifar A. MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. J Pest Sci. 2014;87:691–699.
  • Natrajan D, Srinivasan S, Sundar K, et al. Formulation of essential oil-loaded chitosan-alginate nanocapsules. J Food Drug Anal. 2015;23:560–568.
  • Yahya MZA, Harun MK, Ali AMM, et al. XRD and surface morphology studies on chitosan-based film electrolytes. J Appl Sci. 2006;6:3150–3154.
  • Magaldi S, Mata-Essayag S, Hartung de Capriles C, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8:39–45.
  • Nikoomanesh F, Roudbarmohammadi S, Roudbary M, et al. Investigation of bcr1 Gene Expression in Candida albicans isolates by RT PCR technique and its impact on biofilm formation. IEM. 2016;2:22–24.
  • Maryam RSR, Bita B, Zahra F, et al. Identification of Candida species isolated form Iranian women with vaginal candidasis by PCR-RFLP method. Eur J Exp Biol. 2013;3:365–369.
  • Rossoni RD, de Barros PP, de Alvarenga JA, et al. Antifungal activity of clinical Lactobacillus strains against Candida albicans biofilms: identification of potential probiotic candidates to prevent oral candidiasis. Biofouling. 2018;34:212–225.
  • Mosel DD, Dumitru R, Hornby JM, et al. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol. 2005;71:4938–4940.
  • Katragkou A, McCarthy M, Alexander EL, et al. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother. 2015;70:470–478.
  • Xia FQ J, Xu W, Zhang Z, et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling. 2017;33:283–293.
  • Zhu CLWX, Lin ZZ, Xie ZH, et al. Cell microenvironment stimuli-responsive controlled-release delivery systems based on mesoporous silica nanoparticles. J Food Drug Anal. 2014;22:18–28.
  • Dugal S, Fernandes A. Formulation and evaluation of a novel mucoadhesive drug delivery system to treat intestinal candidiasis in immunocompromised patients. Res Pharm. 2011;4:10–16.
  • Yadav AGM, Jain DK. Nano-medicine based drug delivery system. Pharm Technol Res. 2011;1:13.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5:707–715.
  • Chopra M, Bernela M, Kaur P, et al. Alginate/gum acacia bipolymeric nanohydrogels-promising carrier for zinc oxide nanoparticles. Int J Biol Macromol. 2015;72:827–833.
  • Deat-Laine E, Hoffart V, Garrait G, et al. Efficacy of mucoadhesive hydrogel microparticles of whey protein and alginate for oral insulin delivery. Pharm Res. 2013;30:721–734.
  • Hosseini SF, Zandi M, Rezaei M, et al. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym. 2013;95:50–56.
  • de Oliveira EF, Paula HCB, de Paula RCM. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces. 2014;113:146–151.
  • Nadège Décanis NT, Alexandra C, Manuel V, et al. Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J. 2011;5:119–126.