4,205
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Biotin-functionalized copolymeric PEG-PCL micelles for in vivo tumour-targeted delivery of artemisinin

, , ORCID Icon &
Pages 104-114 | Received 11 Jun 2018, Accepted 23 Oct 2018, Published online: 19 Jan 2019

Reference

  • Romio M, Morgese G, Trachsel L, et al. Poly (2-oxazoline)-pterostilbene block-copolymer nanoparticles for dual-anticancer drug delivery. Biomacromolecules. 2017;19:103–111.
  • Zhang W-J, Hong C-Y, Pan C-Y. Efficient fabrication of photosensitive polymeric nano-objects via an ingenious formulation of RAFT dispersion polymerization and their application for drug delivery. Biomacromolecules. 2017;18:1210–1217.
  • Green JJ, Shi J, Chiu E, et al. Biodegradable polymeric vectors for gene delivery to human endothelial cells. Bioconjugate Chem. 2006;17:1162–1169.
  • Li Y, Ding J, Zhu J, et al. Photothermal effect-triggered drug release from hydrogen bonding-enhanced polymeric micelles. Biomacromolecules. 2018;19(6):1950–1958.
  • Jiang Y, Wong S, Chen F, et al. Influencing selectivity to cancer cells with mixed nanoparticles prepared from albumin–polymer conjugates and block copolymers. Bioconjugate Chem. 2017;28:979–985.
  • Du B, Jia S, Wang Q, et al. A self-targeting, dual ros/ph-responsive apoferritin nanocage for spatiotemporally controlled drug delivery to breast cancer. Biomacromolecules. 2018;19:1026–1036.
  • Ting JM, Porter WW, III, Mecca JM, et al. Advances in polymer design for enhancing oral drug solubility and delivery. Bioconjugate Chem. 2018;29:939–952.
  • Xu W, Ding J, Chen X. Reduction-responsive polypeptide micelles for intracellular delivery of antineoplastic Agent. Biomacromolecules. 2017;18:3291–3301.
  • Liu Q, Xu N, Liu L, et al. Dacarbazine-loaded hollow mesoporous silica nanoparticles grafted with folic acid for enhancing antimetastatic melanoma response. ACS Appl Mater Interfaces. 2017;9:21673–21687.
  • Shiao Y-S, Chiu H-H, Wu P-H, et al. Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery. ACS Appl Mater Interfaces. 2014;6:21832–21841.
  • Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces. 2016;8:21107–21133.
  • Sinha A, Chakraborty A, Jana NR. Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery. ACS Appl Mater Interfaces. 2014;6:22183–22191.
  • Martinez AP, Qamar B, Fuerst TR, et al. Biodegradable “smart” polyphosphazenes with intrinsic multifunctionality as intracellular protein delivery vehicles. Biomacromolecules. 2017;18:2000–2011.
  • Tian J, Xu L, Xue Y, et al. Enhancing photochemical internalization of dox through a porphyrin-based amphiphilic block copolymer. Biomacromolecules. 2017;18:3992–4001.
  • De Luca S, Chen F, Seal P, et al. Binding and release between polymeric carrier and protein drug: ph-mediated interplay of coulomb forces, hydrogen bonding, van der Waals interactions, and entropy. Biomacromolecules. 2017;18:3665–3677.
  • Mathews PD, Patta ACMF, Gonçalves JV, et al. Targeted drug delivery and treatment of endoparasites with biocompatible particles of pH responsive structure. Biomacromolecules. 2017;19:499–510.
  • Cheng H, Fan X, Wang X, et al. Hierarchically self-assembled supramolecular host-guest delivery system for delivery of chemotherapeutics to drug resistant cancer tumours. Biomacromolecules. 2018;19:1926–1938.
  • Miyazaki M, Yuba E, Hayashi H, et al. Hyaluronic acid-based pH-sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjugate Chem. 2017;29:44–55.
  • Peng X-H, Qian X, Mao H, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 2008;3:311.
  • Sanna V, Sechi M. Nanoparticle therapeutics for prostate cancer treatment. Nanomed: Nanotechnol, Biol Med. 2012;8:S31–S36.
  • Jochum FD, Roth PJ, Kessler D, et al. Double thermoresponsive block copolymers featuring a biotin end group. Biomacromolecules. 2010;11:2432–2439.
  • Říhová B, Jelinkova M, Strohalm J, et al. Antiproliferative effect of a lectin-and anti-Thy-1.2 antibody-targeted HPMA copolymer-bound doxorubicin on primary and metastatic human colorectal carcinoma and on human colorectal carcinoma transfected with the mouse Thy-1.2 gene. Bioconjugate Chem. 2000;11:664–673.
  • Mandracchia D, Rosato A, Trapani A, et al. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. Nanomed Nanotechnol, Biol Med. 2017;13:1245–1254.
  • Lesniak W, Kariapper M, Nair B, et al. Synthesis and characterization of nanodevices for targeted tumor therapy. Nanomed Nanotechnol, Biol Med. 2006;2:318.
  • Chen S, Yang K, Tuguntaev RG, et al. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomed Nanotechnol, Biol Med. 2016;12:269–286.
  • Nakase I, Gallis B, Takatani-Nakase T, et al. Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett. 2009;274:290–298.
  • Chen Y, Lin X, Park H, et al. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomed Nanotechnol, Biol Med. 2009;5:316–322.
  • Van Nijlen T, Brennan K, Van den Mooter G, et al. Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions. Int J Pharm. 2003;254:173–181.
  • Sharafi A, Hashemi Sohi H, Sharafi A, et al. Tissue culture and regeneration of an antimalarial plant, Artemisia sieberi Besser. Res J Pharmacogn. 2014;1:15–20.
  • Mirzaee H, Sharafi A, Sohi HH. In vitro regeneration and transient expression of recombinant sesquiterpene cyclase (SQC) in Artemisia annua L. S Afr J Bot. 2016;104:225–231.
  • Woodrow C, Haynes R, Krishna S. Artemisinins. Postgraduate Med J. 2005;81:71–78.
  • Li QG, Peggins JO, Fleckenstein LL, et al. The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol. 1998;50:173–182.
  • Shutava TG, Balkundi SS, Vangala P, et al. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano. 2009;3:1877–1885.
  • Wang T, He N. Preparation, characterization and applications of low-molecular-weight alginate–oligochitosan nanocapsules. Nanoscale. 2010;2:230–239.
  • Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc. 2014;18:85–99.
  • Crespo-Ortiz MP, Wei MQ. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. BioMed Res Int. 2012;(2011):247597.
  • Cuong N-V, Jiang J-L, Li Y-L, et al. Doxorubicin-loaded PEG-PCL-PEG micelle using xenograft model of nude mice: effect of multiple administration of micelle on the suppression of human breast cancer. Cancers. 2010;3:61–78.
  • Khoee S, Rahmatolahzadeh R. Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: a comprehensive kinetic study. Eur J Med Chem. 2012;50:416–427.
  • Kim SY, Cho SH, Lee YM, et al. Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems. Macromol Res. 2007;15:646–655.
  • Desagher S, Martinou J-C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–377.