2,043
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Polymerization-sensitive switch-on monomer for terminal transferase activity assay

, , ORCID Icon & ORCID Icon
Pages 256-259 | Received 09 Oct 2018, Accepted 12 Nov 2018, Published online: 27 Jan 2019

References

  • Li Z, Bai X, Ruparel H, et al. A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A. 2003;100:414–419.
  • Seo TS, Bai X, Ruparel H, et al. Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. Proc Natl Acad Sci U S A. 2004;101:5488–5493.
  • Tan L, Liu Y, Yang Q, et al. Design and synthesis of fluorescence-labeled nucleotide with a cleavable azo linker for DNA sequencing. Chem Commun (Camb). 2016;52:954–957.
  • Kosuri S, Church GM. Large-scale de novo DNA synthesis: technologies and applications. Nat Methods. 2014;11:499–507.
  • Conrad F, Hanne A, Gaur RK, et al. Enzymatic synthesis of 2′-modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates. Nucl Acids Res. 1995;23:1845–1853.
  • Hocek M. Synthesis of base-modified 2′-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem. 2014;79:9914–9921.
  • Verga D, Welter M, Steck A-L, et al. DNA polymerase-catalyzed incorporation of nucleotides modified with a G-quadruplex-derived DNAzyme. Chem Commun. 2015;51:7379–7381.
  • Guliyev R, Ozturk S, Sahin E, et al. Expanded bodipy dyes: anion sensing using a bodipy analog with an additional difluoroboron bridge. Org Lett. 2012;14:1528–1531.
  • Zhu S, Dorh N, Zhang J, et al. Highly water-soluble neutral near-infrared emissive BODIPY polymeric dyes. J Mater Chem. 2012;22:2781–2790.
  • Fan G, Yang L, Chen Z. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications. Front Chem Sci Eng. 2014;8:405–417.
  • Xu J, Li Q, Yue Y, et al. A water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent sensor for H2O2 sensing in vivo. Biosens Bioelectron. 2014;56:58–63.
  • Zhang J, Peng F, Dong X, et al. Water-soluble BODIPY derivative as a highly selective “Turn-On” fluorescent probe for hydrogen sulfide in living cells. Chem Lett. 2015;44:1524–1526.
  • Lin J-H, Yang Y-C, Shih Y-C, et al. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: application to alkaline-phosphatase-linked immunoassay. Biosens Bioelectron. 2016;77:242–248.
  • Zhao B, Gong Z, Ma Z, et al. Simple and sensitive microRNA labeling by terminal deoxynucleotidyl transferase. Acta Biochim Biophys Sin. 2012;44:129–135.
  • Boulé J-B, Rougeon F, Papanicolaou C. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J Biol Chem. 2001;276:31388–31393.
  • Wang L-J, Ren M, Liang L, et al. Controllable fabrication of bio-bar codes for dendritically amplified sensing of human T-lymphotropic viruses. Chem Sci. 2018;9:4942–4949.
  • Zhang Y, Wang X-Y, Zhang Q, et al. Label-free sensitive detection of DNA methyltransferase by target-induced hyperbranched amplification with zero background signal. Anal Chem. 2017;89:12408–12415.
  • McCaffrey R, Lillquist A, Sallan S, et al. Clinical utility of leukemia cell terminal transferase measurements. Cancer Res. 1981;41:4814–4820.
  • Wang L-J, Luo M-L, Zhang Q, et al. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase. Chem Commun. 2017;53:11016–11019.
  • Lu L, Wang M, Liu L-J, et al. A luminescence switch-on probe for terminal deoxynucleotidyl transferase (TdT) activity detection by using an iridium(III)-based i-motif probe. Chem Commun. 2015;51:9953–9956.
  • Yuan Y, Li W, Liu Z, et al. A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template. Biosens Bioelectron. 2014;61:321–327.
  • Ye T, Li C, Su C, et al. Enzymatic polymerization of poly (thymine) for the synthesis of copper nanoparticles with tunable size and their application in enzyme sensing. Chem Commun. 2015;51:8644–8647.
  • Peng F, Liu Z, Li W, et al. Enzymatically generated long polyT-templated copper nanoparticles for versatile biosensing assay of DNA-related enzyme activity. Anal Methods. 2015;7:4355–4361.
  • Liu Z, Li W, Nie Z, et al. Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity. Chem Commun (Camb). 2014;50:6875–6878.