5,066
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells

, , , , , & show all
Pages 319-329 | Received 23 Jul 2018, Accepted 15 Nov 2018, Published online: 27 Jan 2019

References

  • Hanif F, Muzaffar K, Perveen K. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18:3.
  • Zhang XH, Zhang NN, Meng XB, et al. Hesperetin inhibits the proliferation of cerebrally implanted C6 glioma and involves suppression of HIF-1α/VEGF pathway in rats. Biomed Res. 2017;28:1205-1211.
  • Bi WL, Beroukhim R. Beating the odds: extreme long-term survival with glioblastoma. Soc Neuro-Oncol. 2014;16(9):1159-1160.
  • Haar CP, Hebbar P, Wallace GC, et al. Drug resistance in glioblastoma: a mini review. Neurochem Res. 2012;37:1192–1200.
  • Murphy J, Spencer D, Cheng Y, et al. Gold Nanoparticles for the Treatment of Malignant Gliomas. THE WORLD SCIENTIFIC ENCYCLOPEDIA OF NANOMEDICINE AND BIOENGINEERING I: Volume 1: Noble Metal Nanoparticles for Biomedical Applications: World Scientific; 2017;151–176.
  • Prakash O, Kumar A, Kumar P, et al. Anticancer potential of plants and natural products: A. Ajps. 2013;1:104–115.
  • Galati G, O'brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004;37:287–303.
  • Ravishankar D, Rajora AK, Greco F, et al. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45:2821–2831.
  • Galati E, Monforte M, Kirjavainen S, et al. Biological effects of hesperidin, a citrus flavonoid.(Note I): antiinflammatory and analgesic activity. Farmaco. 1994;40:709–712.
  • Galati E, Trovato A, Kirjavainen S, et al. Biological effects of hesperidin, a Citrus flavonoid.(Note III): antihypertensive and diuretic activity in rat. Farmaco. 1996;51:219–221.
  • Parhiz H, Roohbakhsh A, Soltani F, et al. Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29:323–331.
  • Sambantham S, Radha M, Paramasivam A, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev. 2013;14:4347–4352.
  • Ye L, Chan FL, Chen S, et al. The citrus flavonone hesperetin inhibits growth of aromatase-expressing MCF-7 tumor in ovariectomized athymic mice. J Nutr Biochem. 2012;23:1230–1237.
  • Alshatwi AA, Ramesh E, Periasamy V, et al. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013;27:581–592.
  • Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (citrus flavanoid) in 1, 2‐dimethylhydrazine‐induced colon cancer. Phytother Res. 2013;27:999–1005.
  • Liu L, Chen J. Solubility of hesperetin in various solvents from (288.2 to 323.2) K. J Chem Eng Data. 2008;53:1649–1650.
  • Erlund I, Meririnne E, Alfthan G, et al. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr. 2001;131:235–241.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Molecul Pathol. 2009;86:215–223.
  • Zhou Y, Peng Z, Seven ES. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2017;270:290-303.
  • Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15:517–535.
  • Hafezi Ghahestani Z, Alebooye Langroodi F, Mokhtarzadeh A, et al. Evaluation of anti-cancer activity of PLGA nanoparticles containing crocetin. Artif Cells Nanomed Biotechnol. 2017;45:955–960.
  • Ersoz M, Erdemir A, Uzunoglu D, et al., editors. Investigation of anti-cancer activity of hesperetin and hesperetin loaded polymeric nanoparticles on C6 glioma cells. WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: FEBS OPEN BIO; 2018.
  • Duranoğlu D, Uzunoglu D, Mansuroglu B, et al. Synthesis of hesperetin loaded PLGA nanoparticles by two different experimental design methods and biological evaluation of optimized nanoparticles. Nanotechnol. 2018;29(39).
  • Arasoglu T, Derman S. Assessment of the antigenotoxic activity of poly (d, l-lactic-co-glycolic acid) nanoparticles loaded with caffeic acid phenethyl ester using the AMES/Salmonella microsome assay. J Agri Food Chem. 2018;66(24):6196-6204.
  • Derman S, Akdeste ZM. Particle size and zeta potential investigation of synthetic peptide-protein conjugates/Sentetik peptid-protein konjugatlarının parçacık boyutu ve zeta potensiyel analizi. Turkish J Biochem. 2015;40:282–289.
  • Arasoglu T, Derman S, Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnol. 2016;27:025103.
  • Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J Nanomater. 2015;16:318.
  • Arasoglu T, Derman S, Mansuroglu B, et al. Synthesis, characterization and antibacterial activity of juglone encapsulated PLGA nanoparticles. J Appl Microbiol. 2017;123:1407–1419.
  • Walker JM. The Bicinchoninic Acid (BCA) assay for Protein Quantitation. The Protein Protocols Handbook. Totowa, NJ: Springer; 2002. p.11–14.
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399.
  • Esterbauer H, Cheeseman KH. [42] determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in enzymology. Vol.186. New York (NY): Elsevier; 1990. p.407–421.
  • McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–6055.
  • Boyne AF, Ellman GL. A methodology for analysis of tissue sulfhydryl components. Anal Biochem. 1972;46:639–653.
  • Sousa F, Cruz A, Fonte P, et al. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Scientific Rep. 2017;7:3736.
  • Fathi M, Varshosaz J, Mohebbi M, et al. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioprocess Technol. 2013;6:1464–1475.
  • Gurushankar K, Gohulkumar M, Prasad NR, et al. Synthesis, characterization and in vitro anti-cancer evaluation of hesperetin-loaded nanoparticles in human oral carcinoma (KB) cells. Adv Nat Sci: Nanosci Nanotechnol. 2013;5:015006.
  • Ferreira O, Schro¨der B, Pinho SP. Solubility of hesperetin in mixed solvents. J Chem Eng Data. 2013;58:2616–2621.
  • Fathi M, Varshosaz J. Novel hesperetin loaded nanocarriers for food fortification: Production and characterization. J Funct Foods. 2013;5:1382–1391.
  • Krishnan G, Subramaniyan J, Subramani PC, et al. Nanochemopreventive effect of polymer functionalized gold nanoparticles containing hesperetin drug inhibited proliferation and induced apoptosis in Hep3B cells. J App Pharm Sci. 2016;6:114–123. Vol.
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342.
  • Leifert WR, Abeywardena MY. Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity. Nutr Res. 2008;28:842–850.
  • Ramanathan R, Das N, Tan C. Inhibitory effects of 2-hydroxy chalcone and other flavonoids on human cancer cell-proliferation. Int J Oncol. 1993;3:115–119.
  • Yordi EG, Pérez EM, Matos MJ, et al. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being and Health: InTech. 2012.DOI:10.5772/29471
  • Srivastava S, Somasagara RR, Hegde M, et al. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Scientific Rep. 2016;6:24049.
  • Kyrylkova K, Kyryachenko S, Leid M, et al. Detection of Apoptosis by TUNEL Assay. Odontogenesis: Springer; 2012. p. 41–47.
  • Yallapu MM, Gupta BK, Jaggi M, et al. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29.
  • Nair L, Jagadeeshan S, Nair SA, et al. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed. 2011;6:1685.
  • Acharya A, Das I, Chandhok D, et al. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxidative Med Cell Long. 2010;3:23–34.
  • Wang F, Gao F, Lan M, et al. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol in Vitro. 2009;23:808–815.
  • Khoshtabiat L, Mahdavi M, Dehghan G, et al. Oxidative stress-induced apoptosis in chronic myelogenous leukemia k562 cells by an active compound from the dithio-carbamate family. Asian Pac J Cancer Prev. 2016;17:4267–4273.
  • Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168:58–74.
  • Park E-J, Park K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 2009;184:18–25.
  • Bodduluru LN, Kasala ER, Barua CC, et al. Antiproliferative and antioxidant potential of hesperetin against benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Chem Biol Interact. 2015;242:345–352.
  • Malhotra A, Nair P, Dhawan D. Modulatory effects of curcumin and resveratrol on lung carcinogenesis in mice. Phytother Res. 2010;24:1271–1277.
  • Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin Interven Aging. 2007;2:219.