23,029
Views
217
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae

, , , , , , , , & show all
Pages 341-352 | Received 17 Sep 2018, Accepted 29 Nov 2018, Published online: 29 Jan 2019

References

  • Mew TW. Current status and future-prospects of research on bacterial-blight of rice. Annu Rev Phytopathol. 1987;25:359–382.
  • Prasanna VL, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;31:9155–9162.
  • Zhong L, Liu H, Samal M, et al. Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. J Photochem Photobiol B-Biol. 2018;183:293–301.
  • Fujihara S, Naito H, Kimura T. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF2 thin-films via sol-gel process. Thin Solid Films. 2001;389:227–232.
  • Mochinaga R, Yamasaki T, Arakawa T. The gas-sensing of SmCoOx/MOx (M = Fe, Zn, In, Sn) having a heterojunction. Sens Actuators B-Chem. 1998;52:96–99.
  • Siyanbola TO, Sasidhar K, Anjaneyulu B, et al. Anti-microbial and anti-corrosive poly (ester amide urethane) siloxane modified ZnO hybrid coatings from Thevetia peruviana seed oil. J Mater Sci. 2013;48:8215–8227.
  • Kumar S, Ahlawat W, Kumar R, et al. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 2015;70:498–503.
  • Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–4028.
  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–1562.
  • Okitsu K, Mizukoshi Y, Yamamoto TA, et al. Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett. 2007;61:3429–3431.
  • Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol. 2012;94:287–293.
  • Sundrarajan M, Gowri S. Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract. Chalcogenide Lett. 2011;8:447–451.
  • Thovhogi N, Diallo A, Gurib-Fakim A, et al. Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J Alloys Compounds. 2015;647:392–396.
  • Dhand V, Soumya L, Bharadwaj S, et al. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C-Mater Biol Appl. 2016;58:36–43.
  • Satpathy S, Patra A, Ahirwar B, et al. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif Cells Nanomed Biotechnol. 2018;1–15. doi: 10.1080/21691401.2018.1489265.
  • Arokiyaraj S, Vincent S, Saravanan M, et al. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2017;45:372–379.
  • Chahardoli A, Karimi N, Sadeghi F, et al. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif Cells Nanomed Biotechnol. 2018;46:579–588.
  • Velusamy P, Das J, Pachaiappan R, et al. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crop Prod. 2015;66:103–109.
  • Jain N, Bhargava A, Tarafdar JC, et al. A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol. 2013;97:859–869.
  • Jayaseelan C, Rahuman AA, Kirthi AV, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:78–84.
  • Prashanth GK, Prashanth PA, Nagabhushana BM, et al. Comparison of anticancer activity of biocompatible ZnO nanoparticles prepared by solution combustion synthesis using aqueous leaf extracts of Abutilon indicum, Melia azedarach and Indigofera tinctoria as biofuels. Artif Cells Nanomed Biotechnol. 2018;46:968–979.
  • Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull. 2011;46:2560–2566.
  • Alaghemand A, Khaghani S, Bihamta MR, et al. Green synthesis of zinc oxide nanoparticles using Nigella sativa L. extract: the effect on the height and number of branches. J Nanostruct. 2018;8:82–88.
  • Saha R, Karthik S, Kumar PMRSA, et al. Psidium gujava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog Org Coat. 2018;124:80–91.
  • Luque PA, Nava O, Soto-Robles CA, et al. Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles. J Mater Sci: Mater Electron. 2018;29:17638–17643. doi:10.1007/s10854-018-9867-5.
  • Ngoepe NM, Mbita Z, Mathipa M, et al. Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram Int. 2018;44:16999–17006.
  • Rajeshkumar S, Kumar SV, Ramaiah A, et al. Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549). Enzyme Microb Technol. 2018;117:91–95.
  • Fouda A, Hassan SED, Salem SS, et al. In-vitro cytotoxicity, antibacterial and UV-protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis. 2018;125:252–261.
  • Taran M, Rad M, Alavi M. Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of media. BI. 2017;8:81–89.
  • Fu FY, Li LY, Liu LJ, et al. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. Acs Appl Mater Interfaces. 2015;7:2597–2606.
  • Guo HY, He XM, Hu CG, et al. Effect of particle size in aggregates of ZnO-aggregate-based dye-sensitized solar cells. Electrochim Acta. 2014;120:23–29.
  • Prakash MB, Paul S. Green synthesis of silver nanoparticles using vinca roseus leaf extract and evaluation of their antimicrobial activities. Int J Appl Biol Pharma Technol. 2012;3:105–111.
  • Tona L, Kambu K, Ngimbi N, et al. Antiamoebic and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol. 1998;61:57–65.
  • Arokiyaraj S, Dinesh Kumar V, Elakya V, et al. Biosynthesized silver nanoparticles using floral extract of Chrysanthemum indicum L.–potential for malaria vector control. Environ Sci Pollut Res. 2015;22:9759–9765.
  • Fouad H, Hongjie L, Hosni D, et al. Controlling Aedes albopictus and Culex pipiens pallensusing silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cell Nanomed Biotechnol. 2018;46:558–567.
  • Sutradhar P, Saha A. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J Exp Nanosci. 2016;11:314–327.
  • Cai L, Chen J, Liu Z, et al. Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol. 2018;9:790.
  • Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2000;97:4885–4890.
  • Hassan A, Usman J, Kaleem F, et al. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian J Infect Dis. 2011;15:305–311.
  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, et al. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol. 2001;71:235–244.
  • Barman G, Maiti S, Laha JK. Bio-fabrication of gold nanoparticles using aqueous extract of red tomato and its use as a colorimetric sensor. Nanoscale Res Lett. 2013;8:181–190. doi:10.1186/1556-276x-8-181.
  • Hashemi S, Asrar Z, Pourseyedi S, et al. Green synthesis of ZnO nanoparticles by Olive (Olea europaea). Iet Nanobiotechnol. 2016;10:400–404.
  • Harbourne N, Jacquier JC, O’Riordan D. Optimisation of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 2009;115:15–19.
  • Basnet P, Chanu TI, Samanta D, et al. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilising agents. J Photochem Photobiol B Biol. 2018;183:201–221.
  • Mohammadian M, Es'haghi Z, Hooshmand S. Green and chemical synthesis of zinc oxide nanoparticles and size evaluation by UV – vis spectroscopy. J Nanomed Res. 2018;1:7.
  • Bhuyan T, Mishra K, Khanuja M, et al. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015;32:55–61.
  • Yuvakkumar R, Suresh J, Saravanakumar B, et al. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:250–258.
  • Kumar SS, Venkateswarlu P, Rao Rao VR, et al. Synthesis, characterization and optical properties of zinc oxide nanoparticles. International Nano Lett. 2013;3:30–36. doi:10.1186/2228-5326-3-30.
  • Fouad H, Hongjie L, Yanmei D, et al. Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filaria vector Culex pipiens pallens and its antimicrobial activity. Artif Cells Nanomed Biotechnol. 2017;45:1369–1378.
  • Duffy LL, Osmond-McLeod MJ, Judy J, et al. Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control. 2018;92:293–300.
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C-Mater Biol Appl. 2014;44:278–284.
  • Bridier A, Briandet R, Thomas V, et al. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 2011;27:1017–1032.
  • Ahmad AA, Askora A, Kawasaki T, et al. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol. 2014;5:1–11. doi:10.3389/fmicb.2014.00321.
  • Alavi M, Karimi N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag-TiO2, TiO2-Ag, Ag-Cu and Cu-Ag nanocomposites against multi-drug-resistant bacteria. Artif Cell Nanomed Biotechnol. 2018;1:1–5. doi:10.1080/21691401.2018.146923.
  • Rajabairavi N, Raju CS, Karthikeyan C, et al. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. In Ebenezar J, editor. Recent Trends Mater Sci Appl. 2017;189:245–254.
  • Krishnamoorthy K, Veerapandian M, Zhang L-H, et al. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C. 2012;116:17280–17287.
  • Agarwal H, Menon S, Venkat-Kumar S, et al. Mechanistic study of the antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biol Inter. 2018;286:60–70.