2,811
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Self-assembled thermal gold nanorod-loaded thermosensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy

, , , , , , , & show all
Pages 406-419 | Received 28 Sep 2018, Accepted 22 Nov 2018, Published online: 06 Feb 2019

References

  • Paterson RR. Ganoderma - a therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001.
  • Xu JW, Zhao W, Zhong JJ. Biotechnological production and application of ganoderic acids. Appl Microbiol Biotechnol. 2010;87:457–466.
  • Da J, Cheng CR, Yao S, et al. A reproducible analytical system based on the multi-component analysis of triterpene acids in Ganoderma lucidum. Phytochemistry. 2015;114:146–154.
  • Zhao XR, Huo XK, Dong PP, et al. Inhibitory Effects of Highly Oxygenated Lanostane Derivatives from the Fungus Ganoderma lucidum on P-Glycoprotein and α-Glucosidase. J Nat Prod. 2015;78:1868–1876.
  • Bishop KS, Kao CH, Xu Y, et al. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 2015;114:56–65.
  • Shi L, Ren A, Mu D, et al. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol. 2010;88:1243–1251.
  • Guo XY, Han J, Ye M, et al. Identification of major compounds in rat bile after oral administration of total triterpenoids of Ganoderma lucidum by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Pharmaceutical Biomed. 2012;63:29–39.
  • Zhang DH, Jiang LX, Li N, et al. Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma lingzhi. J Agric Food Chem. 2017;65:4683–4690.
  • Zhao X, Luo G, Bai C, et al. Juglone thermosensitive liposomes: preparation, characterization, in vitro release and hyperthermia cell evaluation. Int J Food Eng. 2016;12:429–438.
  • Kim HR, You DG, Park SJ, et al. MRI Monitoring of tumour-selective anticancer drug delivery with stable thermosensitive liposomes triggered by high-intensity focused ultrasound. Mol Pharmaceutics. 2016;13:1528–1539.
  • Tagami T, Ernsting MJ, Li SD. Efficient tumour regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release. 2011;152:303–309.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822.
  • Sun D, Li N, Zhang W, et al. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo. J Nanopart Res. 2016;18:3.
  • Hansen MB, Gaal EV, Minten I, et al. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J Control Release. 2012;164:87–94.
  • Kono K, Ozawa T, Yoshida T, et al. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumour-specific chemotherapy. Biomaterials 2010;31:7096–7105.
  • Yang Y, Yang Y, Xie X, et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumour-specific therapy. Biomaterials. 2014;35:4368–4381.
  • Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumour effect. J Pharm Sci. 2007;13:2722–2727.
  • Banno B, Ickenstein LM, Chiu GN, et al. The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo. J Pharm Sci. 2010;99:2295–2308.
  • Kuai R, Yuan W, Qin Y, et al. Efficient delivery of payload into tumour cells in a controlled manner by TAT and thiolytic cleavable PEG co-modified liposomes. Mol Pharmaceutics. 2010;7:1816–1826.
  • Tagami T, Foltz WD, Ernsting MJ, et al. MRI monitoring of intratumoural drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 2011;32:6570–6578.
  • Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumour xenograft model. Cancer Res. 2000;60:1197–1201.
  • Koning GA, Eggermont AMM, Lindner LH, et al. Hyperthermia and Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to Solid Tumours. Pharm Res. 2010;27:1750–1754.
  • Hossann M, Wang T, Wiggenhorn M, et al. Size of thermosensitive liposomes influences content release. J Control Release. 2010;147:436–443.
  • Alahmady ZS, Aljamal WT, Bossche JV, et al. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. Acs Nano. 2012;6:9335–9346.
  • Lozano N, Al-Jamal WT, Taruttis A, et al. Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J Am Chem Soc. 2012;134:13256–13258.
  • Yang L, Tseng YT, Suo G, et al. Photothermal therapeutic response of cancer cells to aptamer–gold nanoparticle-hybridized graphene oxide under NIR illumination. Acs Appl Mater Interfaces. 2015;7:5097–5106.
  • Pan L, Liu J, Shi J. Intranuclear photosensitizer delivery and photosensitization for enhanced photodynamic therapy with ultralow irradiance. Adv Funct Mater. 2014;24:7318–7327.
  • Chen Z, Zhao P, Luo Z, et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. Acs Nano. 2016;10:10049–10057.
  • Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Coll Surf B. 2016;148:116–129.
  • Sun D, Zhang W, Mou Z, et al. Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. Acs Appl Mater Interfaces. 2017;9:10047–10060.
  • Sun D, Zhang W, Li N, et al. Silver nanoparticles-quercetin conjugation to siRNA against drug-resistant Bacillus subtilis for effective gene silencing: in vitro and in vivo. Mat Sci Eng C-Mate. 2016;63:522–534.
  • Velema WA, van der Berg JP, Szymanski W, et al. Orthogonal control of antibacterial activity with light. ACS Chem Biol. 2014;9:1969–1974.
  • Gunputh UF, Le H, Handy RD, et al. Anodised TiO 2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implant. Mat Sci Eng C-Mate. 2018;91:638–644.
  • Choi I, Lee J, Kim W, et al. On-demand modulation of bacterial cell fates on multifunctional dynamic substrates. Acs Appl Mater Interfaces. 2018;10:4324–4332.
  • Sun D, Zhang W, Lv M, et al. Antibacterial activity of ruthenium(II) polypyridyl complex manipulated by membrane permeability and cell morphology. Bioorg Med Chem Lett. 2015;25:2068–2073.
  • Takao S, Sekizawa O, Samjeské G, et al. Observation of degradation of Pt and carbon support in polymer electrolyte fuel cell using combined nano-XAFS and TEM techniques. Acs Appl Mater Interfaces. 2018;10:27734–27744.
  • Sun D, Mou Z, Li N, et al. Anti-tumour activity and mechanism of apoptosis of A549 induced by ruthenium complex. J Biol Inorg Chem. 2016;21:1–12.
  • Yang X, Zhang W, Zhao Z, et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem. 2017;167:36–48.
  • Yang ZY, Li H, Zeng YP, et al. Photosensitizer-loaded branched polyethylenimine-PEGylated ceria nanoparticles for imaging-guided synchronous photochemotherapy. Acs Appl Mater Interfaces. 2015;7:24218–24228.
  • Andel EV, Bus ID, Tijhaar EJ, et al. Highly specific binding on antifouling zwitterionic polymer-coated microbeads as measured by flow cytometry. Acs Appl Mater Interfaces. 2017;9:38211–38221.
  • Guo X, Liu J, Xiao B. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge. J Biotechnol. 2014;188:130–135.
  • Kong M, Chen XG, Liu CS, et al. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Coll Surf B. 2008;65:197–202.