3,220
Views
11
CrossRef citations to date
0
Altmetric
Review

Haemoglobin-based oxygen carriers and myocardial infarction

Pages 593-601 | Received 28 Nov 2018, Accepted 14 Dec 2018, Published online: 08 Mar 2019

References

  • Natanson C, Kern SJ, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death. JAMA. 2008;299:2303–2312.
  • Olofsson C, Nygårds EB, Ponzer S, et al. A randomized, single-blind, increasing dose safety trial of an oxygen-carrying plasma expander (Hemospan®) administered to orthopedic surgery patients with spinal anaesthesia. Transfus Med. 2008;18:28–39.
  • Olofsson CI, Górecki AZ, Dirksen R, et al. Evaluation of MP4OX for prevention of perioperative hypotension in patients undergoing primary hip arthroplasty with spinal anesthesia: a randomized, double-blind, multicenter study. Anesthesiology. 2011;114:1048–1063.
  • Jahr JS, Mackenzie C, Pearce LB, et al. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopedic surgery. J Trauma. 2008;64:1484–1497.
  • Hemelrijck JV, Levien LJ, Veeckman L, et al. A safety and efficacy evaluation of hemoglobin-based oxygen carrier HBOC-201 in a randomized, multicenter red blood cell controlled trial in noncardiac surgery patients. Anesth Analg. 2014;119:766–776.
  • Moore EE, Moore FA, Fabian TC, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: the USA multicenter trial. J Am Coll Surg. 2009;208:1–13.
  • Silverman TA, Weiskopf RB. Hemoglobin-based oxygen carriers: current status and future directions. Transfusion. 2009;49:2495–2515.
  • Vandegriff KD, McCarthy M, Rohlfs RJ, et al. Colloid osmotic properties of modified hemoglobins: chemically cross-linked versus polyethylene glycol surface-conjugated. Biophys Chem. 1997;69:23–30.
  • Nelson DJ. Hemassist™: development and clinical profile. In: Rudolph AS, Rabinovici R, Feuerstein GZ, editors. Red blood cell substitutes basic principles and clinical applications. New York(NY): Marcel Dekker; 1998. p. 353–400.
  • Vandegriff KD, Malavalli A, Wooldridge J, et al. MP4, a new nonvasoactive PEG-Hb conjugate. Transfusion. 2003;43:509–516.
  • Dubé GP, Vranckx P, Greenburg AG. HBOC-201: the multipurpose oxygen therapeutic. EuroIntervention. 2008;4:161–165.
  • Gould SA, Sehgal LR, Sehgal HL, et al. The development of hemoglobin solutions as red cell substitutes: hemoglobin solutions. Transfus Sci. 1995;16:5–17.
  • Gould SA, Moore EE, Hoyt DB, et al. The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery. J Am Coll Surg. 1998;187:113–122.
  • Flory PJ. Statistical mechanics of chain molecules. New York(NY): Wiley (Interscience); 1969.
  • Talarico TL, Guise KJ, Stacey CJ. Chemical characterization of pyridoxalated hemoglobin polyoxyethylene conjugate. Biochim Biophys Acta. 2000;1476:53–65.
  • Caccia D, Ronda L, Frassi R, et al. PEGylation promotes hemoglobin tetramer dissociation. Bioconjug Chem. 2009;20:1356–1366.
  • Biopure. Scientific commentary on the Natanson et al. meta-analysis. [Online] 2008 [cited 2008 October 16]; Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-59322009000800016.
  • Estep TN. Pharmacokinetics and mechanisms of plasma removal of hemoglobin-based oxygen carriers. Artif Cells Nanomed Biotechnol. 2015;43:203–215.
  • Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Eur Heart J. 2012;33:2551–2567.
  • Babuin L, Jaffe AS. Troponin: the biomarker of choice for the detection of cardiac injury. Cmaj. 2005;173:1191–1202.
  • Dasgupta A, Wells A, Biddle DA. Negative interference of bilirubin and hemoglobin in the MEIA troponin I assay but not in the MEIA ck-mb assay. J Clin Lab Anal. 2001;15:76–80.
  • Wolthuis A, Peek D, Scholten R, et al. Effect of the hemoglobin-based oxygen carrier HBOC-201 on laboratory instrumentation: Cobas Integra, Chiron Blood Gas Analyzer 840, Sysmex SE-9000 and BCT. Clin Chem Lab Med. 1999;37:71–76.
  • Sodi R, Darn SM, Davison AS, et al. Mechanism of interference by haemolysis in the cardiac troponin T immunoassay. Ann Clin Biochem. 2006;43:49–56.
  • Ma Z, Monk TG, Goodnough LT, et al. Effect of hemoglobin- and perfluorbron-based oxygen carriers on common clinical laboratory tests. Clin Chem. 1997;43:1732–1737.
  • Cameron SJ, Gerhardt G, Engelstad M, et al. Interference in clinical chemistry assays by the hemoglobin-based oxygen carrier, Hemospan. Clin Biochem. 2009;42:221–224.
  • Björkholm M, Fagrell B, Przybelski R, et al. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica. 2005;90:505–515.
  • Wu AHB, Feng YJ, Moore R, et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. Clin Chem. 1998;44:1198–1208.
  • Freilich D, Pearce LB, Pitman A, et al. HBOC-201 vasoactivity in a phase III clinical trial in orthopedic surgery subjects-extrapolation of potential risk for acute trauma trials. J Trauma. 2009;66:365–376.
  • Kim HW. Acellular hemoglobin-based oxygen carrier mediated blood pressure elevation and vasoconstriction: a review of proposed mechanisms and contributing factors. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen carriers. Heidelberg: Springer; 2013. p. 587–620.
  • Vogel WM, Dennis RC, Cassidy G, et al. Coronary constrictor effect of stroma-free hemoglobin solutions. Am J Physiol. 1986;251:H413–H420.
  • Macdonald VW, Winslow RM, Marini MA, et al. Coronary vasoconstrictor activity of purified and modified human hemoglobin. Biomater Artif Cells Artif Organs. 1990;18:263–282.
  • Vogel MW, Hsia JC, Briggs LL, et al. Reduced coronary vasoconstrictor activity of hemoglobin solutions purified by ATP-agarose affinity chromatography. Life Sci. 1987;41:89–93.
  • Sharma AC, Rebello S, Gulati A. Regional circulatory and systemic hemodynamic effects of diaspirin cross-linked hemoglobin in the rat. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:593–602.
  • Kingma JG, Sandhu R, Hamelin ND, et al. The effects of hemodilution with Hemolink™ upon hemodynamics and blood flow distribution in anesthetized dogs. Artif Cells Blood Substit Immobil Biotechnol. 2002;30:137–154.
  • Caswell JE, Strange MB, Rimmer DM, et al. A novel hemoglobin-based blood substitute protects against myocardial reperfusion injury. Am J Physiol Heart Circ Physiol. 2005;288:H1796–HH801.
  • Ulatowski JA, Nishikawa T, Matheson-Urbaitis B, et al. Regional blood flow alterations after bovine fumaryl beta beta-crosslinked hemoglobin transfusion and nitric oxide synthase inhibition. Crit Care Med. 1996;24:558–565.
  • McKenzie JE, Cost EA, Scandling DM, et al. Effects of diaspirin crosslinked haemoglobin during coronary angioplasty in the swine. Cardiovasc Res. 1994;28:1188–1192.
  • Van Iterson M, Siegemund M, Burhop K, et al. Hemoglobin-based oxygen carrier provides heterogeneous microvascular oxygenation in heart and gut after hemorrhage in pigs. J Trauma. 2003;55:1111–1124.
  • Mongan PD, Moon-Massat PF, Rentko V, et al. Regional blood flow after serial normovolemic exchange transfusion with HBOC-201 (Hemopure) in anesthetized swine. J Trauma. 2009;67:51–60.
  • Serruys PW, Vranckx P, Slagboom T, et al. Haemodynamic effects, safety, and tolerability of haemoglobin-based oxygen carrier-201 in patients undergoing PCI for CAD. EuroIntervention. 2008;3:600–609.
  • Meliga E, Vranckx P, Regar E, et al. Proof-of-concept trial to evaluate haemoglobin based oxygen therapeutics in elective percutaneous coronary revascularization. Rationale, protocol design and haemodynamic results. EuroIntervention. 2008;4:99–107.
  • Olson JS, Foley EW, Rogge C, et al. No scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med. 2004;36:685–697.
  • Yu B, Shahid M, Egorina EM, et al. Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier. Anesthesiology. 2010;112:586–594.
  • Biro GP. Adverse HBOC-endothelial dysfunction synergism: a possible contributor to adverse clinical outcomes? Curr Drug Discov Technol. 2012;9:194–203.
  • Ekseth K, Abildgaard L, Vegfors M, et al. The in vitro effects of crystalloids and colloids on coagulation. Anaesthesia. 2002;57:1102–1108.
  • Toussaint M, Latger-Cannard V, Caron A, et al. Hemoglobin-based oxygen carriers do not alter platelet functions: study of three chemically modified hemoglobin solutions. Intensive Care Med. 2003;29:62–68.
  • Leytin V, Mazer D, Mody M, et al. Hemolink™, an o-raffinose cross-linked haemoglobin-based oxygen carrier, does not affect activation and function of human platelets in whole blood in vitro. Br J Haematol. 2003;120:535–541.
  • Lee DH, Bardossy L, Peterson N, et al. o-Raffinose cross-linked hemoglobin improves the hemostatic defect associated with anemia and thrombocytopenia in rabbits. Blood. 2000;96:3630–3636.
  • Jahr JS, Weeks DL, Desai P, et al. Does Oxyvita, a new-generation hemoglobin-based oxygen carrier, or Oxyglobin acutely interfere with coagulation compared with normal saline or 6% hetastarch? An ex vivo thromboelastography study. J Cardiothorac Vasc Anesth. 2008;22:34–39.
  • Burhop KE, Farrell L, Nigro C, et al. Effects of intravenous infusions of diaspirin cross-linked hemoglobin (DCLHb) on sheep. Biomater Artif Cells Immobilization Biotechnol. 1992;20:581–585.
  • Olsen SB, Tang DB, Jackson MR, et al. Enhancement of platelet deposition by cross-linked hemoglobin in a rat carotid endarterectomy model. Circulation. 1996;93:327–332.
  • Marret E, Bonnin P, Mazoyer E, et al. The effects of a polymerized bovine-derived hemoglobin solution in a rabbit model of arterial thrombosis and bleeding. Anesth Analg. 2004;98:604–610.
  • Arnaud F, Hammett M, Asher L, et al. Effects of bovine polymerized hemoglobin on coagulation in controlled hemorrhagic shock in swine. Shock. 2005;24:145–152.
  • Przybelski RJ, Daily EK, Kisicki JC, et al. Phase I study of the safety and pharmacologic effects of diaspirin cross-linked hemoglobin solution. Crit Care Med. 1996;24:1993–2000.
  • Carmichael FJ, Ali AC, Campbell JA, et al. A phase I study of oxidized raffinose cross-linked human hemoglobin. Crit Care Med. 2000;28:2283–2292.
  • Przybelski RJ, Daily EK, Micheels J, et al. A safety assessment of diaspirin cross-linked hemoglobin (DCLHb) in the treatment of hemorrhagic, hypovolemic shock. Prehosp Disaster Med. 1999;14:251–264.
  • Schubert A, Przybelski RJ, Eidt JF, et al. Diaspirin-crosslinked hemoglobin reduces blood transfusion in noncardiac surgery: a multicenter, randomized, controlled, double-blinded trial. Anesth Analg. 2003;97:323–332.
  • Hughes GS, Francom SF, Antal EJ, et al. Hematologic effects of a novel hemoglobin-based oxygen carrier in normal male and female subjects. J Lab Clin Med. 1995;126:444–451.
  • Jahr JS, Liu H, Albert OK, et al. Does HBOC-201 (Hemopure) affect platelet function in orthopedic surgery: a single-site analysis from a multicenter study. Am J Ther. 2010;17:140–147.
  • Burhop KE, Goldberg CM, Balma D, et al. Effects of diaspirin cross-linked hemoglobin (DCLHb) on hematologic variables [abstract]. Blood. 1992;80:221a.
  • Standl T, Burmeister MA, Horn EP, et al. Bovine haemoglobin-based oxygen carrier for patients undergoing haemodilution before liver resection. Br J Anaesth. 1998;80:189–194.
  • Sprung J, Kindscher JD, Wahr JA, et al. The use of bovine hemoglobin glutamer-250 (Hemopure®) in surgical patients: results of a multicenter, randomized, single-blinded trial. Anesth Analg. 2002;94:799–808.
  • Simoni J, Simoni G, Martinez-Zaguilan R, et al. Improved blood substitute evaluation of its effects on human endothelial cells. Asaio J. 1998;44:M356–M367.
  • Motterlini R, Foresti R, Vandegriff K, et al. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am J Physiol. 1995;269:H648–H655.
  • Goldman DW, Breyer IIIRJ, Yeh D, et al. Acellular hemoglobin-mediated oxidative stress toward endothelium: a role for ferryl iron. Am J Physiol. 1998;275:H1046–H1053.
  • D’Agnillo F. Redox activity of cell-free hemoglobin: implications for vascular oxidative stress and endothelial injury. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen carriers. Heidelberg: Springer; 2013. p. 665–682.
  • D’Agnillo F. Redox active hemoglobin enhances lipopolysaccharide-induced injury to cultured bovine endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287:H1875–H1882.
  • Belcher JD, Chen C, Nguyen J, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123:377–390.
  • Balla J, Vercellotti GM, Jeney V, et al. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid Redox Signal. 2007;9:2119–2137.
  • Nagy E, Eaton JW, Jeney V, et al. Red cells, hemoglobin, heme, iron and atherogenesis. Atvb. 2010;30:1347–1353.
  • Cheng AM, Moore EE, Johnson JL, et al. Polymerized hemoglobin induces heme oxygenase-1 protein expression and inhibits intercellular adhesion molecule-1 protein expression in human lung microvascular endothelial cells. J Am Coll Surg. 2005;201:579–584.
  • Abraham NG, Lavrovsky Y, Schwartzman ML, et al. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc Natl Acad Sci USA. 1995;92:6798–6802.
  • Yachie A, Niida Y, Wada T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103:129–135.
  • Turne N, Molasco L, Moake J. Generation and breakdown of soluble ultralarge von Willebrand factor multimers. Semin Thromb Hemost. 2012;38:38–46.
  • Studt JD, Hovinga JAK, Antoine G, et al. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS-13 inhibitor: in vitro inhibition of ADAMTS-13 activity by hemoglobin. Blood. 2005;105:542–544.
  • Zhou Z, Yee DL, Guchhait P. Molecular link between intravascular hemolysis and vascular occlusion in sickle cell disease. Cvp. 2012;10:756–761.
  • Pimanda JE, Ganderton T, Maekawa A, et al. Role of thrombospondin-1 in control of von Willebrand factor multimer size in mice. J Biol Chem. 2004;279:21439–21448.
  • Vischer UM, Jornot L, Wollheim CB, et al. Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells. Blood. 1995;85:3164–3172.
  • Walter VS, Chang TMS. Chronotropic effects of in vitro perfusion with albumin, stroma-free hemoglobin, and polyhemoglobin solutions. Biomater Artif Cells Artif Organs. 1990;18:283–298.
  • Feola M, Simoni J, Canizaro PC, et al. Toxicity of polymerized hemoglobin solutions. Surg Gynecol Obstet. 1988;166:211–222.
  • Burhop K, Gordon D, Estep T. Review of Hemoglobin-induced myocardial lesions. Artif Cells Blood Substit Immobil Biotechnol. 2004;32:353–374.
  • Muir WW, Ilangovan G, Zweier JL, et al. Vital organ tissue oxygenation after serial normovolemic exchange transfusion with HBOC-201 in anesthetized swine. Shock. 2011;35:597–603.
  • Young MA, Malavalli A, Winslow N, et al. Toxicity and hemodynamic effects after single dose administration of MalPEG-hemoglobin (MP4) in rhesus monkeys. Transl Res. 2007;149:333–342.
  • George I, Geng-Hua Y, Schulman AR, et al. A polymerized bovine hemoglobin oxygen carrier preserves regional myocardial function and reduces infarct size after acute myocardial ischemia. Am J Physiol Heart Circ Physiol. 2006;291:H1126–H1137.
  • Hekkert MTL, Dubé GP, Regar E, et al. Preoxygenated hemoglobin-based oxygen carrier HBOC-201 annihilates myocardial ischemia during brief coronary artery occlusion in pigs. Am J Physiol Heart Circ Physiol. 2010;298:H1103–H1113.
  • Norris EJ, Ness PM, Williams GM. Use of a human polymerized hemoglobin solution as an adjunct to acute normovolemic hemodilution during complex abdominal aortic reconstruction. J Clin Anesth. 2003;15:220–223.
  • Niquille M, Touzet M, Leblanc I, et al. Reversal of intraoperative myocardial ischemia with a hemoglobin-based oxygen carrier. Anesthesiology. 2000;92:882–885.
  • Mullon J, Giacoppe G, Clagett C, et al. Transfusion of polymerized bovine hemoglobin in a patient with severe autoimmune hemolytic anemia. N Engl J Med. 2000;342:1638–1643.
  • Fitzgerald MC, Chan JY, Ross AW, et al. A synthetic haemoglobin-based oxygen carrier and the reversal of cardiac hypoxia secondary to severe anaemia following trauma. Med J Aust. 2011;194:471–473.
  • Mackenzie CF. Key adverse events in recent HBOC phase III clinical trials and their causal relationship to test HBOC’s. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen carriers. Heidelberg: Springer; 2013. p. 527–542.
  • Biro GP. Some critical comments on the major HBOC clinical trials. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen carriers. Heidelberg: Springer; 2013. p. 543–562.
  • Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–508.
  • Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system. Circulation. 2006;114:1531–1544.
  • Gabbianelli R, Santroni AM, Fedeli D, et al. Antioxidant activities of different hemoglobin derivatives. Biochem Biophys Res Commun. 1998;242:560–564.
  • Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and disease. Cia. 2018; 13:757–772.
  • Estep TN. HBOCs and cardiac integrity. In: Kim HW, Greenburg AG, editors. Hemoglobin-based oxygen carriers as red cell substitutes and oxygen carriers. Heidelberg: Springer; 2013. p. 621–646.
  • Weiskopf RB, Silverman TA. Balancing potential risks and benefits of hemoglobin-based oxygen carriers. Transfusion. 2013;53:2327–2333.