2,880
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer

, ORCID Icon, , , , , & ORCID Icon show all
Pages 957-967 | Received 31 Oct 2018, Accepted 14 Dec 2018, Published online: 20 Mar 2019

References

  • Ovarian Cancer Overview. American Cancer Society. 2016.
  • Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–2529.
  • Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177:1053–1064.
  • Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
  • du Bois A, Luck HJ, Meier W. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer [Clinical Trial Clinical Trial, Phase III Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't]. J Natl Cancer Inst. 2003;95:1320–1329.
  • Metzger-Filho O, Moulin C, DʼHondt V. First-line systemic treatment of ovarian cancer: a critical review of available evidence and expectations for future directions [Review]. Curr Opin Oncol. 2010;22:513–520.
  • Howell SB. Pharmacologic principles of intraperitoneal chemotherapy for the treatment of ovarian cancer. Int J Gynecol Cancer. 2008;18:20–25.
  • Chan DL, Morris DL, Rao A. Intraperitoneal chemotherapy in ovarian cancer: a review of tolerance and efficacy. Cancer Manage Res. 2012;4:413–422.
  • Auersperg N, Edelson MI, Mok SC, et al. The biology of ovarian cancer. Semin Oncol. 1998;25:281–304.
  • Fathalla MF. Factors in the causation and incidence of ovarian cancer. Obstetrical Gynecological Survey. 1972;27:751–768.
  • Landrum LM, Gold MA, Moore KN, et al. Intraperitoneal chemotherapy for patients with advanced epithelial ovarian cancer: a review of complications and completion rates. Gynecologic Oncology. 2008;108:342–347.
  • Kampan NC, Madondo MT, McNally OM, et al. Paclitaxel and Its evolving role in the management of ovarian cancer. BioMed Res Int. 2015;2015:1.
  • Sharma S, Verma A, Teja BV, et al. Development of stabilized Paclitaxel nanocrystals: in-vitro and in-vivo efficacy studies. Eur J Pharm Sci. 2015;69:51–60.
  • Tanenbaum LM, Mantzavinou A, Subramanyam KS, et al. Ovarian cancer spheroid shrinkage following continuous exposure to cisplatin is a function of spheroid diameter. Gynecol Oncol. 2017;146:161–169.
  • Sun J, Yin M, Zhu S, et al. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells. Ultrasonics Sonochemistry. 2016;28:319–326.
  • Liu L, Chang S, Sun J, et al. Ultrasound-mediated destruction of paclitaxel and oxygen loaded lipid microbubbles for combination therapy in ovarian cancer xenografts. Cancer Lett. 2015;361:147–154.
  • Scalia S, Young PM, Traini D. Solid lipid microparticles as an approach to drug delivery. Expert Opin Drug Deliv. 2015;12:583–599.
  • Dwivedi P, Khatik R, Khandelwal K, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats. Int J Pharm 2014;466:321–327.
  • Pilaniya U, Pilaniya K, Chandrawanshi HK, et al. Formulation and evaluation of verapamil hydrochloride loaded solid lipid microparticles. Pharmazie. 2011;66:24–30.
  • Passerini N, Qi S, Albertini B, et al. Solid lipid microparticles produced by spray congealing: influence of the atomizer on microparticle characteristics and mathematical modeling of the drug release. J Pharm Sci. 2010;99:916–931.
  • Bussano R, Chirio D, Costa L, et al. Preparation and characterization of insulin-loaded lipid-based microspheres generated by electrospray. J Dispers Sci Technol. 2011;32:1524–1530.
  • Ding L, Lee T, Wang C-H. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization. J Control Release. 2005;102:395–413.
  • Yuan S, Lei F, Liu Z, et al. Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. PLoS One. 2015;10:e0132609.
  • Zhang L, Huang J, Si T, et al. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices. 2012;9:595–612.
  • Chen J, Cui Y, Xu X, et al. Direct and effective preparation of core-shell PCL/PEG nanoparticles based on shell insertion strategy by using coaxial electrospray. Colloids Surf A Physicochem Eng Asp. 2018;547:1–7.
  • Matsuura T, Maruyama T. Calcium phosphate-polymer hybrid microparticles having functionalized surfaces prepared by a coaxially electrospray technique. Colloids Surf A Physicochem Eng Asp. 2017;526:64–69.
  • Soares RMD, Siqueira NM, Prabhakaram MP, et al. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng: C. 2018;92:969–982.
  • Cao L, Luo J, Tu K, et al. Generation of nano-sized core–shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B: Biointerfaces. 2014;115:212–218.
  • Mai Z, Chen J, He T, et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity [10.1039/C6RA25314H]. RSC Adv. 2017;7:1724–1734.
  • Gao Y, Zhao D, Chang M-W, et al. Optimising the shell thickness-to-radius ratio for the fabrication of oil-encapsulated polymeric microspheres. Chem Eng J. 2016; 284:963–971.
  • Zhang C, Yao Z-C, Ding Q, et al. Tri-needle coaxial electrospray engineering of magnetic polymer yolk–shell particles possessing dual-imaging modality, multiagent compartments, and trigger release potential. ACS Appl Mater Interfaces. 2017;9:21485–21495.
  • Xing Z, Zhang C, Zhao C, et al. Targeting oxidative stress using tri-needle electrospray engineered Ganoderma lucidum polysaccharide-loaded porous yolk-shell particles. Eur J Pharm Sci. 2018;125:64–73.
  • Almeria B, Fahmy TM, Gomez A. A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. J Control Release. 2011;154:203–210.
  • Mangrio FA, Dwivedi P, Han S, et al. Characteristics of artemether-loaded poly(lactic-co-glycolic) acid microparticles fabricated by coaxial electrospray: validation of enhanced encapsulation efficiency and bioavailability. Mol Pharma. 2017;14: 4725–4733.
  • Alvi KA, Wang S, Tous G. New and rapid ultra‐performance liquid chromatography assay of paclitaxel. J Liq Chromatogr Relate Technol. 2008;31:941–949.
  • Dwivedi P, Kansal S, Sharma M, et al. Exploiting 4-sulphate N-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes in vitro and in vivo. J Drug Target. 2012;20:883–896.
  • Davoodi P, Feng F, Xu Q, et al. Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications. J Control Release. 2015;205:70–82.
  • Chakraborty S, Liao IC, Adler A, et al. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043–1054.
  • Luo CJ, Edirisinghe M. Core-liquid-induced transition from coaxial electrospray to electrospinning of low-viscosity poly(lactide-co-glycolide) sheath solution. Macromolecules. 2014;47:7930–7938.
  • Dai WG, Dong LC. Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing. Int J Pharm. 2007;336:58–66.
  • Nie H, Dong Z, Arifin DY, et al. Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs. J Biomed Mater Res A. 2010;95:709–716.
  • Singh MN, Hemant KSY, Ram M, et al. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5:65–77.
  • Kumar S, Randhawa JK. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone [10.1039/C5RA10642G]. RSC Adv. 2015;5:68743–68750.
  • Doktorovová S, Kovačević AB, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
  • Soddu E, Rassu G, Cossu M, et al. The effect of formulative parameters on the size and physical stability of SLN based on “green” components. Pharm Dev Technol. 2016;21:98–107.
  • Kou L, Sun J, Zhai Y, et al. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci. 2013;8:1–10.
  • Lawlor C, Kelly C, O’Leary S, et al. Cellular targeting and trafficking of drug delivery systems for the prevention and treatment of MTb. Tuberculosis. 2011;91:93–97.
  • Hu X, Hu J, Tian J, et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J Am Chem Soc. 2013;135:17617–17629.
  • Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 2000;88:2619–2628.
  • Das GC, Holiday D, Gallardo R, et al. Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett. 2001;165:147–153.
  • Peltier S, Oger JM, Lagarce F, et al. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res. 2006;23:1243–1250.
  • Tsai M, Lu Z, Wang J, et al. Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res. 2007;24:1691–1701.
  • Dwivedi P, Yuan S, Han S, et al. Core-shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. Artif Cells Nanomed Biotechnol. 2018;9:1–11.
  • Fu Q, Hargrove D, Lu X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine. 2016;12:1951–1959.