2,793
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes

, ORCID Icon, , &
Pages 945-950 | Received 17 Oct 2018, Accepted 06 Feb 2019, Published online: 11 Mar 2019

References

  • Karou D, Savadogo A, Canini A, et al. Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol. 2005;4(12):1452–1457.
  • Vincent S, Kovendan K, Chandramohan B, et al. Swift fabrication of silver nanoparticles using bougainvillea glabra: potential against the Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Clust Sci. 2017;28:37–58.
  • Mohammadi Z, Sharif ZM, Majdi H, et al. The effect of chrysin-loaded nanofiber on wound healing process in male rat. Chem Biol Drug Des. 2017;90:1106–1114.
  • Shivakumar MS, Srinivasan R, Natarajan D. Larvicidal potential of some Indian medicinal plant extracts against Aedes Aegypti (L.). Asian J Pharm Clin Res. 2013;6(3):77–80.
  • Carcamo MC, Carapeto LP, Duarte JP, et al. Larvicidal efficiency of the mushroom Amanita muscaria (Agaricales, Amanitaceae) against the mosquito Culex quinquefasciatus (Diptera, Culicidae). Rev Soc Brasil Med Trop. 2016;49:95–98.
  • Govindarajan M, Vijayan P, Kadaikunnan S, et al. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: effectiveness on malaria and Zika virus mosquito vectors and impact on non-target aquatic organisms. J Photochem Photobiol B Biol. 2016;162:646–655.
  • Guarda C, et al. Larvicidal activity of natural products and assessment of susceptibility to the insecticide temefos in controlling the Aedes aegypti (Diptera, Culicidae). Interciencia. 2016;41:243–247.
  • Singh G, Prakash S. Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis. Environ Sci Pollut Res. 2015;22:12559–12565.
  • Benelli G, Chandramohan B, Murugan K, et al. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): a HPTLC fingerprinting approach. Nat Prod Res. 2017;31:1185–1190.
  • Gusain R, Suthar S. Potential of aquatic weeds (Lemna gibba, Lemma minor, Pistia stratiotes and Eichhornia sp.) in biofuel production. Process Saf Environ Prot. 2017;109:233–241.
  • Hanan AS, Jazem MA, Hamed GA, et al. Larvicidal activity of synthesized silver nanoparticles using Rhazya strieta leaf extract against mosquito vectors Aedes Aegypti. Res J Biotechnol. 2018;13: 65–72.
  • Saleh MS, Abuzinadah OA, Al-Ghamdi KM, et al. Effectiveness of slow-release tablet formulations of the IGR diflubenzuron and the bioinsecticide spinosad against larvae of Aedes aegypti (L.). Afr Entomol. 2013;21:349–353.
  • Massebo F, Tadesse M, Bekele T, et al. Evaluation on larvicidal effects of essential oils of some local plants against Anopheles arabiensis Patton and Aedes aegypti Linnaeus (Diptera, Culicidae) in Ethiopia. Afr J Biotechnol. 2009;8:4183–4188.
  • Pitasawat B CW, Kanjanapothi D, Panthong A, et al. Screening for larvicidal activity of ten Carminative plants: South east asia. J Trop Med Public Health. 1998;29:660–662.
  • Haq S, Singh SP, Kumar G, et al. Evaluation of mosquito larvicidal efficacy of different parts of Dalbergia sissoo plant. Res J Pharm Biol Chem Sci. 2016;7:463–467.
  • Igbal J, Ishtiag F, Alqarni A, et al. Evaluation of larvicidal efficacy of indigenous plant extracts against Culex quinquefasciatus (Say) under laboratory conditions. Turk J Agric For. 2018;42:207–215.
  • Mukhtar MD. Cytotoxicity of fractions of Pista stratiotes L. on larvae of Culex mosquito and A. salina. Anim Res Int. 2004;1(2):95–99.
  • Ishwarya R, Vaseeharan B, Kalyani S, et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B Biol. 2018;178:249–258.
  • Jazem MA, Khalid A-GM, Abdulaziz BBM. Toxicological and histological effects of selected bacterial biopesticides on Aedes aegypti (L.), the vector of dengue in Saudi Arabia. Res J Biotechnol. 2018;13:1–7.
  • Hanafiah MM, Mohamad NHSM, Abd Aziz NIH. Salvinia molesta and Pistia stratiotes as phytoremediation agents in sewage wastewater treatment. Sains Malaysiana. 2018;47:1625–1634.
  • Chantawee A, Soonwera M. Efficacies of four plant essential oils as larvicide, pupicide and oviposition deterrent agents against dengue fever mosquito, Aedes aegypti Linn. (Diptera: Culicidae). Asian Pac J Trop Biomed. 2018;8:217–225.
  • Jiraungkoorskul W. Efficiency of Tinospora crispa against Culex quinquefasciatus larva. Environ Sci Pollut Res Int. 2018. doi:10.1007/s11356-018-2429-9.
  • Rajakumar G, Rahuman AA, Jayaseelan C, et al. Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res. 2014;113:469–479.
  • Patil SV, Patil CD, Narkhede CP, et al. Phytosynthesized gold nanoparticles-Bacillus thuringiensis (Bt-GNP) formulation: a novel photo stable preparation against mosquito larvae. J Clust Sci. 2018;29:577–583.
  • Osanloo M, Sereshti H, Sedaghat MM, et al. Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res. 2018;25:6466–6473.
  • Kalimuthu K, Panneerselvam C, Chou C, et al. Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia. 2017;785:359–372.
  • Ola-Davies OE, Ajani, O.S. Semen characteristics and sperm morphology of Pistia stratiotes Linn. (Araceae) protected male Albino rats (wistar strain) exposed to sodium arsenite. Faseb J. 2016;30:
  • Ola-Davies O, Ajani OS. Semen characteristics and sperm morphology of Pistia stratiotes Linn. (Araceae) protected male albino rats (Wistar strain) exposed to sodium arsenite. J Complement Integr Med. 2016;13:289–294.
  • Imam T, Um T. Qualitative phytochemical screening and larvicidal potencies of ethanolic extracts of five selected macrophyte species against Anopheles mosquitoes (diptera: culicidae). J Res Environ Sci Toxicol. 2013;2:121–125.
  • Murugan K, Suresh U, Panneerselvam C, et al. Managing wastes as green resources: cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods. Environ Sci Pollut Res. 2018;25:10456–10470.
  • Deng SQ, Deng MZ, Chen JT, et al. Larvicidal activity of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or B.t.i toxin Cyt2Ba against mosquito larvae and formulations for enhancing the effects. J South Med Univ. 2017;37:750–754.
  • Uragayala S, Verma V, Natarajan E, et al. Adulticidal and larvicidal efficacy of three neonicotinoids against insecticide susceptible and resistant mosquito strains. Indian J Med Res. 2015;142:64–70.
  • Subramaniam J, Murugan K, Panneerselvam C, et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res. 2015;22:20067–20083.
  • Dhanker R, Kumar R, Hwang JS. How effective are Mesocyclops aspericornis (Copepoda: Cyclopoida) in controlling mosquito immatures in the environment with an application of phytochemicals? Hydrobiologia. 2013;716:147–162.
  • Fukruksa C, Yimthin T, Suwannaroz M, et al. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasit Vectors. 2017;10:440.
  • Subarani S, Sabhanayakam S, Kamaraj C. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 2013;112:487–499.
  • Soni N, Prakash S. Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res. 2014;113:4015–4022.
  • Tulika TaMA, Tulika T, Mala A. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharm Phytochem. 2017;6:195–206.
  • Rai PK, Kumar V, Lee S, et al. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ Int. 2018;119:1–19.
  • Madhumitha G, Rajakumar G, Roopan SM, et al. Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitol Res. 2012;111:2189–2199.
  • Kovendan K, Chandramohan B, Govindarajan M, et al. Orchids as sources of novel nanoinsecticides? Efficacy of Bacillus sphaericus and Zeuxine gracilis-fabricated silver nanoparticles against dengue, malaria and filariasis mosquito vectors. J Clust Sci. 2018;29:345–357.
  • Chelela BL, Chacha M, Matemu A. Larvicidal potential of wild mushroom extracts against Culex quinquefasciatus Say, Aedes aegypti and Anopheles gambiae Giles S.S. Am J Res Commun. 2014;2(8):105–114.
  • Murugan K, Dinesh D, Nataraj D, et al. Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ Sci Pollut Res. 2018;25:10504–10514.
  • Murugan K, Jaganathan A, Rajaganesh R, et al. Poly(styrene sulfonate)/poly(allylamine hydrochloride) encapsulation of TiO2 nanoparticles boosts their toxic and repellent activity against zika virus mosquito vectors. J Clust Sci. 2018;29:27–39.
  • Kumar VA, Ammani K, Jobina R, et al. Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L. (Euphorbiaceae) leaf extract against Aedes aegypti. Iet Nanobiotechnology. 2016;10:382–388.
  • Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. The Southeast Asian Journal of Tropical Medicine and Public Health. 2005;36:1412–1422.
  • Service M. W. (2012). Medical entomology for students. Cambridge: Cambridge University Press.