2,382
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Biosynthesis of anti-leishmanial natural products in callus cultures of Artemisia scoparia

, , , , , , , , , , & show all
Pages 1122-1131 | Received 17 Jan 2019, Accepted 20 Feb 2019, Published online: 03 Apr 2019

References

  • Hotez PJ, Pecoul B. “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLoS Negl Trop Dis. 2010;4:e718.
  • Ullah N, Nadhman A, Siddiq S, et al. Plants as antileishmanial agents: current scenario. Phytother Res. 2016;30:1905–1925.
  • Karunaweera ND, Ferreira MU. Leishmaniasis: current challenges and prospects for elimination with special focus on the South Asian region. Parasitology. 2018;145:425–429.
  • Chan-Bacab MJ, Peña-Rodríguez LM. Plant natural products with leishmanicidal activity. Nat Prod Rep. 2001;18:674–688.
  • Ponte-Sucre A, Gamarro F, Dujardin JC, et al. Drug resistance and treatment failure in Leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis. 2017;11:e0006052.
  • Boelaert M, Le Ray D, Van Der Stuyft P. How better drugs could change kala‐azar control. Lessons from a cost‐effectiveness analysis. Trop Med Int Health. 2002;7:955–959.
  • Mozaffarian V. A dictionary of Iranian plant names (Latin, English, Persian). Tehran, Iran: Farhang Moaser; 1996.
  • Ashraf M, Hayat MQ, Jabeen S, et al. Artemisia L. species recognized by the local community of the northern areas of Pakistan as folk therapeutic plants. J Med Plants Res. 2010;4:112–119.
  • Singh HP, Mittal S, Kaur S, et al. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009;114:642–645.
  • Tan RX, Zheng W, Tang H. Biologically active substances from the genus Artemisia. Planta Med. 1998;64:295–302.
  • Kaur S, Singh HP, Batish DR, et al. Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: in vivo ROS detection and alterations in antioxidant enzymes. Biochem Syst Ecol. 2012;44:390–399.
  • Singh HP, Kaur S, Mittal S, et al. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem Toxicol. 2010;48:1040–1044.
  • Cha JD, Jeong MR, Jeong SI, et al. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005;71:186–190.
  • Lee YM, Hsiao G, Chang JW, et al. Scoparone inhibits tissue factor expression in lipopolysaccharide-activated human umbilical vein endothelial cells. J Biomed Sci. 2003;10:518–525.
  • Fang Y, Li Z, Watanabe Y. Pharmacokinetics of a novel anti-asthmatic, scoparone, in the rabbit serum assessed by a simple HPLC method. J Ethnopharmacol. 2003;86:127–130.
  • Sharma S, Ali M. New compounds from roots of Artemisia scoparia. J Herbs Spices Med Plants. 1998;5:77–86.
  • Khan MA, Abbasi BH, Ahmed N, et al. Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crops Prod. 2013;46:105–110.
  • Jawdat D, Al-Faoury H, Odeh A, et al. Essential oil profiling in callus of some wild and cultivated Daucus genotypes. Ind Crops Prod. 2016;94:848–855.
  • Adil M, Ren X, Kang DI, et al. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Mol Biol Rep. 2018;25:1919–1927.
  • Ali M, Abbasi BH, Ahmad N, et al. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia–current trends. Crit Rev Biotechnol. 2017;37:833–851.
  • Khan MA, Abbasi BH, Shah NA, et al. Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L.(Milk thistle), a medicinal plant. Plant Cell Tiss Organ Cult. 2015;123:501–510.
  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497.
  • Ul-Haq I, Ullah N, Bibi G, et al. Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iran J Pharm Res. 2012;11:241.
  • Nadhman A, Nazir S, Khan MI, et al. Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans. Int J Nanomed. 2015;10:6891.
  • Abbasi BH, Khan MA, Mahmood T, et al. Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tiss Organ Cult. 2010;101:371–376.
  • Singh HP, Kaur S, Mittal S, et al. Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. J Chem Ecol. 2009;35:154–162.
  • Aslam N, Zia M, Chaudhary MF. Callogenesis and direct organogenesis of Artemisia scoparia. Pak J Biol Sci. 2006;9:1783–1786.
  • Zia M, Mannan A, Chaudhary MF. Effect of growth regulators and amino acids on artemisinin production in the callus of Artemisia absinthium. Pak J Bot. 2007;39:799–805.
  • Phua QY, Chin CK, Asri ZRM, et al. The callugenic effects of 2, 4-dichlorophenoxy acetic acid (2, 4-D) on leaf explants of Sabah snake grass (Clinacanthus nutans). Pak J Bot. 2016;48:561–566.
  • Chaâbani G, Tabart J, Kevers C, et al. Effects of 2, 4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia. Acta Physiol Plant. 2015;37:16.
  • Lashin II, Elhaw MH. Evaluation of secondary metabolites in callus and tissues of Physalis peruviana. Int J Mod Bot. 2016;6:10–17.
  • Ali M, Abbasi BH. Thidiazuron-induced changes in biomass parameters, total phenolic content, and antioxidant activity in callus cultures of Artemisia absinthium L. Appl Biochem Biotechnol. 2014;172:2363–2376.
  • Huang B, Han L, Li S, et al. Optimization of induction, subculture conditions, and growth kinetics of Angelica sinensis (Oliv.) Diels callus. Phcog Mag. 2015;11:574.
  • Zeouk I, Et-Touys A, Balouiri M, et al. Leishmanicidal activity of plant extracts from Sefrou, a Moroccan focus of Leishmaniasis, against various Leishmania parasites in the promastigote stage. Phytothérapie. 2018.
  • Sen R, Chatterjee M. Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine. 2011;18:1056–1069.
  • Fonseca-Silva F, Inacio JD, Canto-Cavalheiro MM, et al. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One. 2011;6:e14666.
  • Kayser O, Kiderlen A, Croft S. Natural products as antiparasitic drugs. Parasitol Res. 2003;90:S55–S62.
  • Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules. 2012;17:12771–12791.
  • Liu K, Liu PC, Liu R, et al. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res. 2015;21:15.
  • Rondon FC, Bevilaqua CM, Accioly MP, et al. In vitro effect of Aloe vera, Coriandrum sativum and Ricinus communis fractions on Leishmania infantum and on murine monocytic cells. Vet Parasitol. 2011;178:235–240.
  • Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7:1085.
  • Novo M, Silvar C, Merino F, et al. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb. Plant Sci. 2017;258:12–20.
  • Saeed S, Ali H, Khan T, et al. Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants. 2017;23:229–237.
  • Liu S, Liu L, Tang Y, et al. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L. Plant Biol J. 2017;19:618–629.
  • Arruda DC, D’Alexandri FL, Katzin AM, et al. Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother. 2005;49:1679–1687.
  • Ceole LF, Cardoso MDG, Soares MJ. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity. Parasitology. 2017;144:1179–1190.
  • Wyk BE, Wink M. Medicinal plants of the world: an illustrated scientific guide to important medicinal plants and their uses. Portland: Timber; 2004. p. 480.