7,321
Views
82
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC‐1)

, , , , &
Pages 1617-1627 | Received 20 Feb 2019, Accepted 07 Mar 2019, Published online: 24 Apr 2019

References

  • Sane N, Hungund B, Ayachit N. Biosynthesis and characterization of gold nanoparticles using plant extracts. Int Conf Adv Nanomater Emerg Eng Technol. 2013;12082:295–299.
  • Rai M, Yadav A. Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol. 2013;7:117–124.
  • Vaghela HM, Pathan AA, Shah RH. The biogenic synthesis of Au, Pd and Pt nanoparticles and its medicinal applications: a review. UK: Cambridge Scholars Publishing; 2018.
  • Peralta-Videa JR, Huang Y, Parsons JG, et al. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;11:4.
  • Soni N, Prakash S. Green nanoparticles for mosquito control. Sci World J. 2014;2014:1.
  • Lakshmana A, Umamaheswari C, Nagarajan NS. A facile phytomediated synthesis of gold nanoparticles using aqueous extract of Momordica cochinchinensis rhizome and their biological activities. J Nanosci Technol. 2016;2:76–80.
  • Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79–92.
  • Patil MP, Ngabire D, Thi HHP, et al. Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci. 2017;28:119–132.
  • Anand K, Gengan RM, Phulukdaree A, et al. Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem. 2015;21:1105–1111.
  • Abid Ali Khan MM, Jain DC, Bhakuni RS. Occurrence of some antiviral sterols in Artemisia annua. Plant Sci. 1991;75:161–165.
  • Divakaran D, Lakkakula JR, Thakur M, et al. Dragon fruit extract capped gold nanoparticles: synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett. 2019;236:498–502.
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355.
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014;136:359–386.
  • Loc WS, Smith JP, Matters G, et al. Novel strategies for managing pancreatic cancer. WJG. 2014;20:14717–14725.
  • Carrato A, Falcone A, Ducreux M, et al. A systematic review of the burden of pancreatic cancer in Europe: real-world impact on survival, quality of life and costs. J Gastrointest Cancer. 2015;46:201–211.
  • Ochwang DO, Kimwele CN, Oduma JA, et al. Medicinal plants used in treatment and management of cancer in Kakamega County Kenya. J Ethnopharmacol. 2014;151:1040–1055.
  • Marconett CN, Morgenstern TJ, San Roman AK, et al. BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biol Ther. 2010;10:397–405.
  • Yang N, Zhao Y, Wang Z, et al. Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Mol Med Rep. 2017;15:929–935.
  • Kan X, Zhang W, You R, et al. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complement Altern Med. 2017;17:41.
  • Suh SJ, Yoon JW, Lee TK, et al. Chemoprevention of Scutellaria bardata on human cancer cells and tumorigenesis in skin cancer. Phytother Res. 2007;21:135–141.
  • Chen CC, Kao CP, Chiu MM, et al. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget. 2017;8:109340.
  • Zhang L, Ren B, Zhang J, et al. Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. J Ethnopharmacol. 2017;206:184–192.
  • Lee SR, Kim MS, Kim S, et al. Constituents from Scutellaria barbata inhibiting nitric oxide production in LPS‐stimulated microglial cells. Chem Biodiversity. 2017;14:e1700231.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology. 2007;73:1712–1720.
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.
  • Sarkar J, Ray S, Chattopadhyay D, et al. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternate. Bioprocess Biosyst Eng. 2012;35:637–643.
  • Honary S, Fathabad EG, Paji ZK, et al. A novel biological synthe- sis of gold nanoparticle by Enterobacteriaceae family. Trop J Pharm Res. 2012;11:887–891.
  • Dumur F, Guerlin A, Dumas E, et al. Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull. 2011;44:119–137.
  • Roopan SM, Madhumitha G, Rahuman AA, et al. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocosnucifera coir extract and its larvicidal activity. Ind Crops Prod. 2013;43:631–635.
  • Sun S, Wang CZ, Tong R, et al. Effects of steaming the root of Panaxnotoginseng on chemical composition and anticancer activities. Food Chem. 2010;118:307–314.
  • Yu KF, Kelly KL, Sakai N, et al. Morphologies and surface plasmon resonance properties of monodisperse bumpy gold nanoparticles. Langmuir. 2008;24:5849–5854.
  • Brolossy TAE, Abdallah T, Mohamed MB, et al. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur Phys J Spec Top. 2008;153:361–364.
  • Zhang X, Qu Y, Shen W, et al. Biogenic synthesis of gold nanoparticles by yeast MagnusiomycesingensLH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp. 2016;497:280–285.
  • Montes MO, Mayoral A, Deepak FL, et al. Anisotropic gold nanoparticles and gold plates biosynthesis using alfalfa extracts. J Nanopart Res. 2011;13:3113–3121.
  • Nejad SM, Bonjar SG, Khaleghi N. Biosynthesis of gold nanoparticles using Streptomyces fulvissimusisolate. Nanomed J. 2015;2:153–159.
  • Rajeshkumar S, Malarkodi C, Vanaja M, et al. Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinariaconoides. Der PharmaChemica. 2013;5:224–229.
  • Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine. 2011;6:1265–1278.
  • Bennur T, Khan Z, Kshirsagar R, et al. Biogenic gold nanoparticles from the ActinomyceteGordoniaamarae: application in rapid sensing of copper ions. Sens Actuators B Chem B. 2016;233:684–690.
  • Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.
  • Thota R, Pauff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology. 2014;28:70–74.
  • Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem Funct. 2011;29:468–480.
  • Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73:2013–2026.
  • Rajendran P, Nandakumar N, Rengarajan T, et al. Antioxidants and human diseases. Clin Chim Acta. 2014;436:332–347.