11,809
Views
83
CrossRef citations to date
0
Altmetric
Review

Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview

, , , , , , , , , & show all
Pages 1674-1692 | Received 12 Feb 2019, Accepted 01 Apr 2019, Published online: 08 May 2019

References

  • Chen XJ, Zhang XQ, Liu Q, et al. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnol. 2018;16:52.
  • Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov. 2006;5:649.
  • Han Y, An Y, Jia G, et al. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nano Scale. 2018;10:6511–6523.
  • Sajid M, Ilyas M, Basheer C, et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and prospects. Environ Sci Pollut Res. 2015;22:4122–4143.
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007.
  • Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Non-Coding RNA Res. 2018;3:161–173.
  • Oberoi HS, Nukolova NV, Kabanov AV, et al. Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev. 2013;65:1667–1685.
  • Schaake-Koning C, Van den Bogaert W, Dalesio O, et al. Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med. 1992;326:524–530.
  • Hellberg V, Wallin I, Eriksson S, et al. Cisplatin and oxaliplatin toxicity: importance of cochlear kinetics as a determinant for ototoxicity. J Nat Cancer Inst. 2009;101:37–47.
  • Burger H, Loos WJ, Eechoute K, et al. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updates. 2011;14:22–34.
  • Stathopoulos GP, Boulikas T. Lipoplatin formulation review article. J Drug Deliv. 2012;58:13–63.
  • Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep. 2004;12:3–12.
  • Boulikas T. Clinical overview on Lipoplatin™: a successful liposomal formulation of cisplatin. Exp Opin Invest Drugs. 2009;18:1197–1218.
  • Kosmas C, Angel J, Athanasiou A, et al. 9088 Phase III study of lipoplatin plus gemcitabine versus cisplatin plus gemcitabine in advanced NSCLC; interim analysis. EJC Suppl. 2009;7:531.
  • Farhat F, Kattan J, Ibrahim K, et al. 457 Preliminary results of a phase II study of lipoplatin (liposomal cisplatin)–vinorelbine combination as first line treatment in HER2/neu negative metastatic breast cancer (MBC). EJC Suppl. 2010;8:192.
  • Kim ES, Lu C, Khuri FR, et al. A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer. 2001;34:427–432.
  • Baba M, Matsumoto Y, Kashio A, et al. Micellization of cisplatin (NC-6004) reduces its ototoxicity in guinea pigs. J Control Release. 2012;157:112–117.
  • Cabral H, Nishiyama N, Okazaki S, et al. Preparation and biological properties of dichloro(1,2-diaminocyclohexane) platinum (II) (DACHPt)-loaded polymeric micelles. J Control Release. 2005;101:223–232.
  • Dragovich T, Mendelson D, Hoos A, et al. 268 A phase II trial of aroplatin (L-NDDP), a liposomal DACH platinum, in patients with metastatic colorectal cancer (CRC) – a preliminary report. EJC Suppl. 2003;5:S82–S83.
  • Khalid M, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528:675–691.
  • Peres C, Matos AI, Conniot J, et al. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Bio Mater. 2017;48:41–57.
  • Muthu MS. Nanoparticles based on PLGA and its co‐polymer: an overview. Asian J Pharm. 2009;3:266.
  • Shi C, Yu H, Sun D, et al. Cisplatin-loaded polymeric nanoparticles: characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomater. 2015;18:68–76.
  • Risnayanti C, Jang YS, Lee J, et al. Nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci Rep. 2018;8:7498.
  • Wang Y, Liu P, Qiu L, et al. Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials. 2013;34:4068–4077.
  • Reardon PJ, Parhizkar M, Harker AH, et al. Electro hydrodynamic fabrication of core–shell PLGA nanoparticles with controlled release of cisplatin for enhanced cancer treatment. Int J Nanomed. 2017;12:3913.
  • Alam N, Koul M, Mintoo MJ, et al. Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor. Biomed Pharmacother. 2017;95:856–864.
  • Tian J, Min Y, Rodgers Z, et al. Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomed Nanotechnol Biol Med. 2017;13:1301–1307.
  • Shabani R, Ashjari M, Ashtari K, et al. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro. Int J Nanomed. 2018;13:2943.
  • Cheng L, Jin C, Lv W, et al. Developing a highly stable PLGA-peg nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. Plos One. 2011;6:e25433.
  • Anish A, D’Souza Renita S. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Exp Opin Drug Deliv. 2016;13:1257–1275.
  • Wang M, You C, Gao Z, et al. An integrated strategy based on dual-targeting nanoparticles for enhanced intracellular drug delivery and synergistic therapeutic. J Biomater Sci. 2018;10:1–27.
  • Ahmad Z, Tang Z, Shah A, et al. Cisplatin loaded methoxide poly(ethylene glycol) block‐poly (L‐glutamic acid‐co‐L‐phenylalanine) nanoparticles against human breast cancer cell. Macromol Biosci. 2014;14:1337–1345.
  • Mi Y, Zhao J, Feng SS. Targeted co-delivery of docetaxel, cisplatin, and herceptin by vitamin E TPGS-cisplatin prodrug nanoparticles for multimodality treatment of cancer. J Control Release. 2013;169:185–192.
  • Quiñones JP, Peniche H, Peniche C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers. 2018;10:235.
  • Babu A, Amreddy N, Muralidharan R, et al. Chemo drug delivery using integrin-targeted PLGA-chitosan nanoparticle for lung cancer therapy. Sci Rep. 2017;7:14674.
  • Babu A, Wang Q, Muralidharan R, et al. Chitosan coated polylactic acid nanoparticle-mediated combinatorial delivery of cisplatin and siRNA/plasmid DNA chemosensitizes cisplatin-resistant human ovarian cancer cells. Mol Pharm. 2014;11:2720–2733.
  • Kim JH, Kim YS, Park K, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127:41–49.
  • Trummer R, Rangsimawong W, Sajomsang W, et al. Chitosan-based self-assembled nano carriers coordinated to cisplatin for cancer treatment. RSC Adv. 2018;8:22967–22973.
  • Deshmukh, Anand S, Chauhan, Pratik N, Noolvi, Malleshappa N, et al. Polymeric micelles: basic research to clinical practice. Int J Pharm. 2017.
  • Yong D, Luo Y, Du F, et al. CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly(l-glutamic acid)/CDDP complexes. Colloids Surf B: Biointerfaces. 2013;105:31–36.
  • Shahin M, Safaei Nikouei N, Lavasanifar A. Polymeric micelles for pH-responsive delivery of cisplatin. J Drug Target. 2014;22:629–637.
  • Song W, Tang Z, Li M, et al. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 2014;10:1392–1402.
  • Song W, Tang Z, Zhang D, et al. Anti-tumor efficacy of c (RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials. 2014;35:3005–3014.
  • Saisyo A, Nakamura H, Fang J, et al. pH-sensitive polymeric cisplatin–ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect. Colloids Surf B Biointerfaces. 2016;138:128–137.
  • Chen Y, Zhang L, Liu Y, et al. Preparation of PGA–PAE-micelles for enhanced antitumor efficacy of cisplatin. ACS Appl Mater Interfaces. 2018;10:25006–25016.
  • Song W, Li M, Tang Z, et al. Methoxypoly(ethylene glycol)‐block‐poly (L‐glutamic acid)‐loaded cisplatin and a combination with iRGD for the treatment of non‐small‐cell lung cancers. Macromol Biosci. 2012;12:1514–1523.
  • Uchino H, Matsumura Y, Negishi T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer. 2005;93:678.
  • Nishiyama N, Okazaki S, Cabral H, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63:8977–8983.
  • Singh J, Jain K, Mehra NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol. 2016:7;1626–1634.
  • Kesavan A, Ilaiyaraja P, Beaula WS, et al. Tumor targeting using polyamidoamine dendrimer–cisplatin nanoparticles functionalized with diglycolamic acid and herceptin. Eur J Pharm Biopharm. 2015;96:255–263.
  • Tran NQ, Nguyen CK, Nguyen TP. Dendrimer-based nanocarriers demonstrating a high efficiency for loading and releasing anticancer drugs against cancer cells in vitro and in vivo. Adv Nat Sci Nanosci Nanotechnol. 2013;4:045013.
  • Cai L, Xu G, Shi C, et al. Telo dendrimer nano carrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials. 2015;37:456–468.
  • Xu X, Li Y, Lu X, et al. Printed in the United States of America glutaryl polyamidoamine dendrimer for overcoming cisplatin-resistance of breast cancer cells. J Nanosci Nanotechnol. 2018;18:6732–6739.
  • Pang X, Jiang Y, Xiao Q, et al. pH-responsive polymer–drug conjugates: design and progress. J Control Release. 2016;222:116–129.
  • Wang H, Xiong Y, Wang R, et al. Cisplatin-stitched α-poly(glutamatic acid) nanoconjugate for enhanced safety and effective tumor inhibition. Eur J Pharm Sci. 2018;119:189–199.
  • Xiong Y, Jiang W, Shen Y, et al. A poly(γ,l-glutamic acid)-citric acid based nanoconjugate for cisplatin delivery. Biomaterials. 2012;33:7182–7193.
  • He Z, Huang J, Xu Y, et al. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG–PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget. 2015;6:42150.
  • Ding D, Li K, Zhu Z, et al. Conjugated polyelectrolyte–cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale. 2011;3:1997–2002.
  • Gao S, Xu Y, Asghar S, et al. Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems. J Drug Target. 2015;23:481–449.
  • Koohi Moftakhari Esfahani M, Alavi SE, Shahbazian S, et al. Drug delivery of cisplatin to breast cancer by polybutylcyanoacrylate nanoparticles. Adv Polym Technol. 2018;37:674–678.
  • Vega-Chacón J, Arbeláez MIA, Jorge JH, et al. pH-responsive poly (aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications. Mater Sci Eng C. 2017;77:366–373.
  • Kates M, Date A, Yoshida T, et al. Preclinical evaluation of intravesical cisplatin nanoparticles for non-muscle-invasive bladder cancer. Clin Cancer Res. 2017;1082.
  • Zhu Z, Su M. Polydopamine nanoparticles for combined chemo-and photothermal cancer therapy. Nanomaterials. 2017;7:160.
  • Lin X, Chen X, Riddell IA, et al. Glutathione-scavenging poly(disulfide amide) nanoparticles for effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett. 2018
  • Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics, and imaging approaches. Mater Sci Eng C. 2017:81:607–626.
  • Catanzaro G, Curcio M, Cirillo G, et al. Albumin nanoparticles for glutathione-responsive release of cisplatin: new opportunities for medulloblastoma. Int J Pharm. 2017;517:168–174.
  • Lee HY, Mohammed KA, Goldberg EP, et al. Cisplatin loaded albumin mesospheres for lung cancer treatment. Am J Cancer Res. 2015;5:603.
  • Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015;12:1547–1563.
  • Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009;30:3476–3485.
  • Ding D, Zhu Z, Liu Q, et al. Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors. Eur J Pharm Biopharm. 2011;79:142–149.
  • Amol MP, Rohit RT, Dipak SG, et al. A review on solid lipid nanoparticle. Res J Pharmaceut Dosag Form Technol. 2016;8:218.
  • Wang G, Wang Z, Li C, et al. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid–polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother. 2018;106:275–284.
  • Li C, Ge X, Wang L. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: a synergistic combination nanotherapy for cervical cancer. Biomed Pharmacother. 2017;86:628–636.
  • Chen Q, Yang Y, Lin X, et al. Platinum(iv) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem Commun. 2018;54:5369–5372.
  • Guo S, Wang Y, Miao L, et al. Lipid-coated cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano. 2013;7:9896–9904.
  • Qu CY, Zhou M, Chen YW, et al. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomed. 2015;10:3911.
  • Gao Z, You C, Wu H, et al. FA and cRGD dual modified lipid–polymer nanoparticles encapsulating polyaniline and cisplatin for highly effective chemo-photothermal combination therapy. J Biomater Sci Polym Ed. 2018;29:397–411.
  • Kuang Y, Liu J, Liu Z, et al. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity. Biomaterials. 2012;33:1596–1606.
  • Zhang R, Song X, Liang C, et al. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer. Biomaterials. 2017;138:13–21.
  • Carvalho Júnior AD, Vieira FP, De Melo VJ, et al. Preparation and cytotoxicity of cisplatin-containing liposomes. Braz J Med Biol Res. 2007;40:1149–1157.
  • Marzban E, Alavizadeh SH, Ghiadi M, et al. Optimizing the therapeutic efficacy of cisplatin PEGylated liposomes via incorporation of different DPPG ratios: in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2015;136:885–891.
  • Kishimoto S, Fujitani N, Ohnishi T, et al. Cisplatin-loaded, sialyl Lewis X-modified liposomes: drug release, biodistribution, and antitumor efficacy. Anti Cancer Res. 2017;37:6055–6061.
  • Kieler-Ferguson HM, Chan D, Sockolosky J, et al. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur J Pharm Sci. 2017;103:85–93.
  • Vhora I, Khatri N, Desai J, et al. Caprylate-conjugated cisplatin for the development of novel liposomal formulation. AAPS Pharm SciTech. 2014;15:845–857.
  • Shein SA, Kuznetsov II, Abakumova TO, et al. VEGF- and VEGFR2-targeted liposomes for cisplatin delivery to glioma cells. Mol Pharmaceutics. 2016;13:3712–3723.
  • Zhou X, Wang J, Wu J, et al. Preparation and evaluation of a novel liposomal formulation of cisplatin. Eur J Pharm Sci. 2015;66:90–95.
  • Song J, Xu T, Zhang Y, et al. 3-Octadecylcarbamoylacrylic acid-cisplatin nanocomplexes for the development of novel liposome formulation. Drug Delivery. 2016;23:3285–3293.
  • Giuberti CDS, Boratto FA, Degobert G, Silveira JN, et al. Investigation of alternative organic solvents and methods for the preparation of long-circulating and pH-sensitive liposomes containing cisplatin. J Liposome Res. 2013;23:220–227.
  • Araújo RS, Silveira ALM, de Souza ÉLDS, et al. Intestinal toxicity evaluation of long-circulating and pH-sensitive liposomes loaded with cisplatin. Eur J Pharm Sci. 2017;106:142–151.
  • Carlesso FN, Araújo RS, Fuscaldi LL, et al. Preliminary data of the antipancreatic tumor efficacy and toxicity of long-circulating and pH-sensitive liposomes containing cisplatin. Nucl Med Commun. 2016;37:727–734.
  • Leite EA, Souza CM, Carvalho-Júnior ÁD, et al. Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity. Int J Nanomed. 2012;7:5259.
  • Wang Y, Zhou J, Qiu L, et al. Cisplatin–alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials. 2014;35:4297–4309.
  • Saber MM, Al-Mahallawi AM, Nassar NN, et al. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer. 2018;18:822.
  • Gupta V, Dhote V, Paul BN, et al. Development of novel topical drug delivery system containing cisplatin and imiquimod for dual therapy in cutaneous epithelial malignancy. J Liposome Res. 2014;24:150–162.
  • Pugazhendhi A, Edison TNJI, Karuppusamy I, et al. Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm. 2018;539:104–111.
  • Xiong C, Lu W, Zhou M, et al. Cisplatin-loaded hollow gold nanoparticles for laser-triggered release. Cancer Nanotechnol. 2018;9:6.
  • Davidi ES, Dreifuss T, Motiei M, et al. Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head Neck. 2018;40:70–78.
  • Yang C, Bromma K, Sung W, et al. Determining the radiation enhancement effects of gold nanoparticles in cells in a combined treatment with cisplatin and radiation at therapeutic megavoltage energies. Cancers. 2018;10:150.
  • Chatterjee B, Ghoshal A, Chattopadhyay A, et al. dGTP-templated luminescent gold nanocluster-based composite nanoparticles for cancer theranostics. ACS Biomater Sci Eng. 2018;4:1005–1012.
  • Battogtokh G, Shin D, Ko YT. Hyaluronic acid-coated cisplatin + conjugated gold nanoparticles for combined cancer treatment. J Indus Eng Chem. 2018:65;236–243.
  • Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin. 2018:2:165–177.
  • Li H, Yu H, Zhu C, et al. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Adv. 2016;6:94160–94169.
  • Lv X, Zhao M, Wang Y, et al. Loading cisplatin onto 6-mercaptopurine covalently modified MSNS: a nanomedicine strategy to improve the outcome of cisplatin therapy. Drug Design Dev Ther. 2016;10:3933.
  • Zhang J, Weng L, Su X, et al. Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether-and ethane-bridged hollow mesoporous organosilica nanoparticles. J Colloid Interface Sci. 2018;513:214–221.
  • Gao Z, Li Y, You C, et al. Iron oxide nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly increased toxic reactive oxygen species generation. ACS Appl Bio Mater. 2018;1:270–280.
  • Quan LM, Zhong Y, Weng HH. Synthesis of cell penetrating peptide decorated magnetic nanoparticles loading cisplatin for nasopharyngeal cancer therapy. J Clin Otorhinolaryngol Head Neck Surg. 2018;32:963–968.
  • Ibarra J, Encinas D, Blanco M, et al. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: synthesis, characterization, and in vitro assays. Mater Res Express. 2018;5:015023.
  • Dunuweera SP, Rajapakse RMG. Encapsulation of anticancer drug cisplatin in vaterite polymorph of calcium carbonate nanoparticles for targeted delivery and slow release. Biomed Phys Eng Express. 2017;4:015017.
  • Son KD, Kim YJ. Anticancer activity of drug-loaded calcium phosphate nanocomposites against human osteosarcoma. Biomater Res. 2017;21:13.
  • Zhang Z, Sheng J, Zhang M, et al. Dual-modal imaging and excellent anticancer efficiency of cisplatin and doxorubicin loaded NaGdF 4:Yb 3+/Er 3+ nanoparticles. RSC Adv. 2018;8:22216–22225.
  • Ferreira NH, Furtado RA, Ribeiro AB, et al. Europium (III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J Inorg Biochem. 2018;182:9–17.
  • Carmona FJ, Jiménez-Amezcua I, Rojas S, et al. Aluminum doped MCM-41 nanoparticles as platforms for the dual encapsulation of a CO-releasing molecule and cisplatin. Inorg Chem. 2017;56:10474–10480.
  • You C, Wu H, Wang M, et al. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy. Nano Technol. 2017;29:015601.
  • Zhang C, Zhao X, Guo H. Synergic highly effective photothermal-chemotherapy with platinum prodrug linked melanin-like nanoparticles. Artif Cells Nanomed Biotechnol. 2018;2:1–8.
  • He Y, Huang Y, Huang Z, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release. 2017;264:76–88.
  • Wen J, Xu Y, Li H, et al. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun. 2015;51:11346–11358.
  • Sui L, Yang T, Gao P, et al. Incorporation of cisplatin into PEG-wrapped ultrapurified large-inner-diameter MWCNTs for enhanced loading efficiency and release profile. Int J Pharm. 2014;471:157–165.
  • Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomater. 2017;58:466–478.
  • Nasrollahi F, Koh YR, Chen P, et al. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater Sci Eng C. 2018:94;247–257.
  • Yuan YG, Gurunathan S. Combination of graphene oxide–silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Int J Nanomed. 2017;12:6537.
  • Prylutska S, Politenkova S, Afanasieva K, et al. A nanocomplex of C60 fullerene with cisplatin: design, characterization, and toxicity. Beilstein J Nanotechnol. 2017;8:1494–1501.
  • Chiang CS, Tseng YH, Liao BJ, et al. Magnetically targeted nanocapsules for PAA‐cisplatin‐conjugated cores in PVA/SPIO shells via surfactant‐free emulsion for reduced nephrotoxicity and enhanced lung cancer therapy. Adv Healthcare Mater. 2015;4:1066–1075.
  • Zhai Q, Li H, Song Y, et al. Preparation and optimization lipid nanocapsules to enhance the antitumor efficacy of cisplatin in hepatocellular carcinoma HepG2 cells. AAPS PharmSciTech. 2018;5:2048–2057.
  • Gao X, Yang H, Wu M, et al. Targeting delivery of lidocaine and cisplatin by nanogel enhances chemotherapy and alleviates metastasis. ACS Appl Mater Interfaces. 2018;10:25228–25240.
  • Peng J, Qi T, Liao J, et al. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials. 2013;34:8726–8740.
  • Qu J, Liu Y, Yu Y, et al. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng C. 2014;44:166–174.
  • Zhen X, Wang X, Xie C, et al. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials. 2013;34:1372–1382.
  • Hwang PA, Lin XZ, Kuo KL, et al. Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials. 2017;10:291.
  • Mondal J, Patra M, Panigrahi AK, et al. Boldine-loaded nanoparticles have improved efficiency of drug carriage and protective potential against cisplatin-induced toxicity. J Ayurveda Integr Med. 2018:5:10–25
  • Yu S, Zhang D, He C, et al. Injectable thermosensitive polypeptide-based CDDP-complexed hydrogel for improving localized antitumor efficacy. Biomacromolecules. 2017;18:4341–4348.
  • Shen W, Chen X, Luan J, et al. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl Mater Interfaces. 2017;9:40031–40046.
  • Zhu W, Li Y, Liu L, et al. Supramolecular hydrogels as a universal scaffold for stepwise delivering Dox and Dox/cisplatin loaded block copolymer micelles. Int J Pharm. 2012;437:11–19.
  • Zhu W, Li Y, Liu L, et al. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property. Biomacromolecules. 2010;11:3086–3092.
  • Wu X, Wu Y, Ye H, et al. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J Control Release. 2017;25:81–93.