2,704
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Paeonol prevents IL-1β-induced inflammatory response and degradation of type II collagen in human primary chondrocytes

, , , &
Pages 2139-2145 | Received 05 Mar 2019, Accepted 22 Apr 2019, Published online: 30 May 2019

References

  • van Dalen SC, Schelbergen R, Sloëtjes A, et al. Locally administered adipose derived mesenchymal stem cells reinforce their anti-inflammatory effect through IL-1β mediated attraction of neutrophils into knee joints with experimental osteoarthritis. Osteoarthr Cartil. 2015;23:A379–A380.
  • Huang CY, Lai KY, Hung LF, et al. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology 2011;50:1379–1389.
  • Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33.
  • Gudmann NS, Karsdal MA. Biochemistry of collagens, laminins and elastin. Waltham, MA: Academic Press; 2016. Chapter 2, Type II collagen; p. 13–20.
  • Ma JD, Zhou JJ, Zheng DH, et al. Serum matrix metalloproteinase-3 as a noninvasive biomarker of histological synovitis for diagnosis of rheumatoid arthritis. Mediat Inflamm. 2014;2014:1.
  • Chen YJ, Tsai KS, Chan DC, et al. Honokiol, a low molecular weight natural product, prevents inflammatory response and cartilage matrix degradation in human osteoarthritis chondrocytes. J Orthop Res. 2014;32:573–580.
  • Funato S, Yasuhara R, Yoshimura K, et al. Extracellular matrix loss in chondrocytes after exposure to interleukin-1β in NADPH oxidase-dependent manner. Cell Tissue Res. 2017;368:135–144.
  • Dearth CL, Slivka PF, Stewart SA, et al. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury. Acta Biomaterialia. 2016;31:50–60.
  • Arendt-Nielsen L, Egsgaard LL, Petersen KK. Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis. Pain 2016;157:1634–1644.
  • Scotece M, Conde J, Abella V, et al. NUCB2/nesfatin‐1: a new adipokine expressed in human and murine chondrocytes with pro‐inflammatory properties, an in vitro study. J Orthop Res. 2014;32:653–660.
  • Ji Q, Xu X, Zhang Q, et al. The IL-1β/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. J Mol Med. 2016;94:771–785.
  • Wang D, Qiao J, Zhao X, et al. Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. Inflammation 2015;38:2235–2241.
  • Nummenmaa E, Hämäläinen M, Pemmari A, et al. TRPA1 as a factor and drug target in osteoarthritis: TRPA1 (transient receptor potential ankyrin 1) mediates interleukin-6 expression in chondrocytes. Osteoarthr Cartil. 2018;26:S124.
  • Hu G, Zhao X, Wang C, et al. MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis. 2017;8:e3140.
  • Schett G, Kiechl S, Bonora E, et al. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis Rheum. 2009;60:2381–2389.
  • Hoeven TA, Kavousi M, Ikram MA, et al. Markers of atherosclerosis in relation to presence and progression of knee osteoarthritis: a population-based cohort study. Rheumatology 2015;54:1692–1698.
  • Karatay S, Kiziltunc A, Yildirim K, et al. Effects of different hyaluronic acid products on synovial fluid levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in knee osteoarthritis. Ann Clin Lab Sci. 2004;34:330–335.
  • Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J, et al. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging 2017;9:2411.
  • Jeon OH, David N, Campisi J, et al. Senescent cells and osteoarthritis: a painful connection. The J Clin Investigat. 2018;128:1229–1237.
  • Roman-Blas JA, Jimenez SA. NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil. 2006;14:839–848.
  • Olivotto E, Otero M, Marcu KB, et al. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open. 2015;1:e000061.
  • Mukherjee SP, Quintas PO, McNulty R, et al. Structural characterization of the ternary complex that mediates termination of NF-κB signaling by IκBα. Proc Nat Acad Sci. 2016;113:6212–6217.
  • Rigoglou S, Papavassiliou AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol. 2013;45:2580–2584.
  • Zhai KF, Duan H, Luo L, et al. Protective effects of paeonol on inflammatory response in IL-1β-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-κB pathway. Inflammopharmacology 2017;25:523–532.
  • Gómez R, Lago F, Gómez‐Reino JJ., et al. Expression and modulation of ghrelin O‐acyltransferase in cultured chondrocytes. Arthritis Rheum. 2009;60:1704–1709.
  • Vural AC, Odabas S, Korkusuz P, et al. Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2017;45:544–550.
  • Gao F, Zhang S. Salicin inhibits AGE-induced degradation of type II collagen and aggrecan in human SW1353 chondrocytes: therapeutic potential in osteoarthritis. Artif Cells Nanomed Biotechnol. 2019;47:1043–1049.
  • Ahangarpour A, Oroojan AA, Khorsandi L, et al. Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. Cell Stress Chaperones. 2018; 23:773–781.
  • Ma S, Bai Z, Wu H, et al. The DPP-4 inhibitor saxagliptin ameliorates ox-LDL-induced endothelial dysfunction by regulating AP-1 and NF-κB. Eur J Pharmacol. 2019;851:186–193.
  • Benito MJ, Veale DJ, FitzGerald O, et al. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases. 2005;64:1263–1267.
  • Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:580.
  • Yang SY, Du LD, Lu Y. Natural small molecule drugs from plants. Singapore: Springer; 2018. Paeonol; p. 439–444.
  • Shakibaei M, John T, Schulze-Tanzil G, et al. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73:1434–1445.
  • Ehrich EW, Schnitzer TJ, McIlwain H, Rofecoxib Osteoarthritis Pilot Study Group, et al. Effect of specific COX-2 inhibition in osteoarthritis of the knee: a 6 week double blind, placebo controlled pilot study of rofecoxib. J Rheumatol. 1999;26:2438–2447.
  • Cremers NAJ, Koenders MI, van de Loo FAJ, et al. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthr Cartil. 2018;30:1e11.
  • Scotece M, Conde J, Lopez V, et al. FRI0029 Nucb2/nesfatin-1: a new adipokine expressed in human and murine chondrocytes with pro-inflammatory properties. Ann Rheum Dis. 2013;72:A377.
  • Ji B, Guo W, Ma H, et al. Isoliquiritigenin suppresses IL-1β induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-κB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med. 2017;40:1709–1718.
  • Cremers N, Geven E, Blom A, et al. S100A8/A9 increases the mobilisation of LY6C high monocytes to the synovium during experimental osteoarthritis. Arthr Res Ther. 2017;19:217.
  • Lou Y, Wang C, Tang Q, et al. Paeonol inhibits IL-1β-induced inflammation via PI3K/Akt/NF-κB pathways: in vivo and vitro studies. Inflammation 2017;40:1698–1706.